summaryrefslogtreecommitdiff
path: root/ffmpeg/libavcodec/ac3enc_template.c
diff options
context:
space:
mode:
authorTim Redfern <tim@eclectronics.org>2013-09-05 17:57:22 +0100
committerTim Redfern <tim@eclectronics.org>2013-09-05 17:57:22 +0100
commit8992cb1d0d07edc33d274f6d7924ecdf6f83d994 (patch)
tree3a2c86846b7eec8137c1507e623fc7018f13d453 /ffmpeg/libavcodec/ac3enc_template.c
parent741fb4b9e135cfb161a749db88713229038577bb (diff)
making act segmenter
Diffstat (limited to 'ffmpeg/libavcodec/ac3enc_template.c')
-rw-r--r--ffmpeg/libavcodec/ac3enc_template.c447
1 files changed, 447 insertions, 0 deletions
diff --git a/ffmpeg/libavcodec/ac3enc_template.c b/ffmpeg/libavcodec/ac3enc_template.c
new file mode 100644
index 0000000..0389c2e
--- /dev/null
+++ b/ffmpeg/libavcodec/ac3enc_template.c
@@ -0,0 +1,447 @@
+/*
+ * AC-3 encoder float/fixed template
+ * Copyright (c) 2000 Fabrice Bellard
+ * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
+ * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * AC-3 encoder float/fixed template
+ */
+
+#include <stdint.h>
+
+#include "libavutil/internal.h"
+
+/* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */
+
+static void scale_coefficients(AC3EncodeContext *s);
+
+static void apply_window(void *dsp, SampleType *output,
+ const SampleType *input, const SampleType *window,
+ unsigned int len);
+
+static int normalize_samples(AC3EncodeContext *s);
+
+static void clip_coefficients(DSPContext *dsp, CoefType *coef, unsigned int len);
+
+static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl);
+
+static void sum_square_butterfly(AC3EncodeContext *s, CoefSumType sum[4],
+ const CoefType *coef0, const CoefType *coef1,
+ int len);
+
+int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
+{
+ int ch;
+
+ FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
+ sizeof(*s->windowed_samples), alloc_fail);
+ FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
+ alloc_fail);
+ for (ch = 0; ch < s->channels; ch++) {
+ FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
+ (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
+ alloc_fail);
+ }
+
+ return 0;
+alloc_fail:
+ return AVERROR(ENOMEM);
+}
+
+
+/*
+ * Copy input samples.
+ * Channels are reordered from FFmpeg's default order to AC-3 order.
+ */
+static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
+{
+ int ch;
+
+ /* copy and remap input samples */
+ for (ch = 0; ch < s->channels; ch++) {
+ /* copy last 256 samples of previous frame to the start of the current frame */
+ memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
+ AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
+
+ /* copy new samples for current frame */
+ memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
+ samples[s->channel_map[ch]],
+ AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
+ }
+}
+
+
+/*
+ * Apply the MDCT to input samples to generate frequency coefficients.
+ * This applies the KBD window and normalizes the input to reduce precision
+ * loss due to fixed-point calculations.
+ */
+static void apply_mdct(AC3EncodeContext *s)
+{
+ int blk, ch;
+
+ for (ch = 0; ch < s->channels; ch++) {
+ for (blk = 0; blk < s->num_blocks; blk++) {
+ AC3Block *block = &s->blocks[blk];
+ const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
+
+#if CONFIG_AC3ENC_FLOAT
+ apply_window(&s->fdsp, s->windowed_samples, input_samples,
+ s->mdct_window, AC3_WINDOW_SIZE);
+#else
+ apply_window(&s->dsp, s->windowed_samples, input_samples,
+ s->mdct_window, AC3_WINDOW_SIZE);
+#endif
+
+ if (s->fixed_point)
+ block->coeff_shift[ch+1] = normalize_samples(s);
+
+ s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
+ s->windowed_samples);
+ }
+ }
+}
+
+
+/*
+ * Calculate coupling channel and coupling coordinates.
+ */
+static void apply_channel_coupling(AC3EncodeContext *s)
+{
+ LOCAL_ALIGNED_16(CoefType, cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
+#if CONFIG_AC3ENC_FLOAT
+ LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
+#else
+ int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
+#endif
+ int av_uninit(blk), ch, bnd, i, j;
+ CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
+ int cpl_start, num_cpl_coefs;
+
+ memset(cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
+#if CONFIG_AC3ENC_FLOAT
+ memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
+#endif
+
+ /* align start to 16-byte boundary. align length to multiple of 32.
+ note: coupling start bin % 4 will always be 1 */
+ cpl_start = s->start_freq[CPL_CH] - 1;
+ num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
+ cpl_start = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
+
+ /* calculate coupling channel from fbw channels */
+ for (blk = 0; blk < s->num_blocks; blk++) {
+ AC3Block *block = &s->blocks[blk];
+ CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
+ if (!block->cpl_in_use)
+ continue;
+ memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
+ for (ch = 1; ch <= s->fbw_channels; ch++) {
+ CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
+ if (!block->channel_in_cpl[ch])
+ continue;
+ for (i = 0; i < num_cpl_coefs; i++)
+ cpl_coef[i] += ch_coef[i];
+ }
+
+ /* coefficients must be clipped in order to be encoded */
+ clip_coefficients(&s->dsp, cpl_coef, num_cpl_coefs);
+ }
+
+ /* calculate energy in each band in coupling channel and each fbw channel */
+ /* TODO: possibly use SIMD to speed up energy calculation */
+ bnd = 0;
+ i = s->start_freq[CPL_CH];
+ while (i < s->cpl_end_freq) {
+ int band_size = s->cpl_band_sizes[bnd];
+ for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
+ for (blk = 0; blk < s->num_blocks; blk++) {
+ AC3Block *block = &s->blocks[blk];
+ if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
+ continue;
+ for (j = 0; j < band_size; j++) {
+ CoefType v = block->mdct_coef[ch][i+j];
+ MAC_COEF(energy[blk][ch][bnd], v, v);
+ }
+ }
+ }
+ i += band_size;
+ bnd++;
+ }
+
+ /* calculate coupling coordinates for all blocks for all channels */
+ for (blk = 0; blk < s->num_blocks; blk++) {
+ AC3Block *block = &s->blocks[blk];
+ if (!block->cpl_in_use)
+ continue;
+ for (ch = 1; ch <= s->fbw_channels; ch++) {
+ if (!block->channel_in_cpl[ch])
+ continue;
+ for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
+ cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
+ energy[blk][CPL_CH][bnd]);
+ }
+ }
+ }
+
+ /* determine which blocks to send new coupling coordinates for */
+ for (blk = 0; blk < s->num_blocks; blk++) {
+ AC3Block *block = &s->blocks[blk];
+ AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
+
+ memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
+
+ if (block->cpl_in_use) {
+ /* send new coordinates if this is the first block, if previous
+ * block did not use coupling but this block does, the channels
+ * using coupling has changed from the previous block, or the
+ * coordinate difference from the last block for any channel is
+ * greater than a threshold value. */
+ if (blk == 0 || !block0->cpl_in_use) {
+ for (ch = 1; ch <= s->fbw_channels; ch++)
+ block->new_cpl_coords[ch] = 1;
+ } else {
+ for (ch = 1; ch <= s->fbw_channels; ch++) {
+ if (!block->channel_in_cpl[ch])
+ continue;
+ if (!block0->channel_in_cpl[ch]) {
+ block->new_cpl_coords[ch] = 1;
+ } else {
+ CoefSumType coord_diff = 0;
+ for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
+ coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
+ cpl_coords[blk ][ch][bnd]);
+ }
+ coord_diff /= s->num_cpl_bands;
+ if (coord_diff > NEW_CPL_COORD_THRESHOLD)
+ block->new_cpl_coords[ch] = 1;
+ }
+ }
+ }
+ }
+ }
+
+ /* calculate final coupling coordinates, taking into account reusing of
+ coordinates in successive blocks */
+ for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
+ blk = 0;
+ while (blk < s->num_blocks) {
+ int av_uninit(blk1);
+ AC3Block *block = &s->blocks[blk];
+
+ if (!block->cpl_in_use) {
+ blk++;
+ continue;
+ }
+
+ for (ch = 1; ch <= s->fbw_channels; ch++) {
+ CoefSumType energy_ch, energy_cpl;
+ if (!block->channel_in_cpl[ch])
+ continue;
+ energy_cpl = energy[blk][CPL_CH][bnd];
+ energy_ch = energy[blk][ch][bnd];
+ blk1 = blk+1;
+ while (!s->blocks[blk1].new_cpl_coords[ch] && blk1 < s->num_blocks) {
+ if (s->blocks[blk1].cpl_in_use) {
+ energy_cpl += energy[blk1][CPL_CH][bnd];
+ energy_ch += energy[blk1][ch][bnd];
+ }
+ blk1++;
+ }
+ cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
+ }
+ blk = blk1;
+ }
+ }
+
+ /* calculate exponents/mantissas for coupling coordinates */
+ for (blk = 0; blk < s->num_blocks; blk++) {
+ AC3Block *block = &s->blocks[blk];
+ if (!block->cpl_in_use)
+ continue;
+
+#if CONFIG_AC3ENC_FLOAT
+ s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
+ cpl_coords[blk][1],
+ s->fbw_channels * 16);
+#endif
+ s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
+ fixed_cpl_coords[blk][1],
+ s->fbw_channels * 16);
+
+ for (ch = 1; ch <= s->fbw_channels; ch++) {
+ int bnd, min_exp, max_exp, master_exp;
+
+ if (!block->new_cpl_coords[ch])
+ continue;
+
+ /* determine master exponent */
+ min_exp = max_exp = block->cpl_coord_exp[ch][0];
+ for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
+ int exp = block->cpl_coord_exp[ch][bnd];
+ min_exp = FFMIN(exp, min_exp);
+ max_exp = FFMAX(exp, max_exp);
+ }
+ master_exp = ((max_exp - 15) + 2) / 3;
+ master_exp = FFMAX(master_exp, 0);
+ while (min_exp < master_exp * 3)
+ master_exp--;
+ for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
+ block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
+ master_exp * 3, 0, 15);
+ }
+ block->cpl_master_exp[ch] = master_exp;
+
+ /* quantize mantissas */
+ for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
+ int cpl_exp = block->cpl_coord_exp[ch][bnd];
+ int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
+ if (cpl_exp == 15)
+ cpl_mant >>= 1;
+ else
+ cpl_mant -= 16;
+
+ block->cpl_coord_mant[ch][bnd] = cpl_mant;
+ }
+ }
+ }
+
+ if (CONFIG_EAC3_ENCODER && s->eac3)
+ ff_eac3_set_cpl_states(s);
+}
+
+
+/*
+ * Determine rematrixing flags for each block and band.
+ */
+static void compute_rematrixing_strategy(AC3EncodeContext *s)
+{
+ int nb_coefs;
+ int blk, bnd;
+ AC3Block *block, *block0 = NULL;
+
+ if (s->channel_mode != AC3_CHMODE_STEREO)
+ return;
+
+ for (blk = 0; blk < s->num_blocks; blk++) {
+ block = &s->blocks[blk];
+ block->new_rematrixing_strategy = !blk;
+
+ block->num_rematrixing_bands = 4;
+ if (block->cpl_in_use) {
+ block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
+ block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
+ if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
+ block->new_rematrixing_strategy = 1;
+ }
+ nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
+
+ if (!s->rematrixing_enabled) {
+ block0 = block;
+ continue;
+ }
+
+ for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
+ /* calculate calculate sum of squared coeffs for one band in one block */
+ int start = ff_ac3_rematrix_band_tab[bnd];
+ int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
+ CoefSumType sum[4];
+ sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
+ block->mdct_coef[2] + start, end - start);
+
+ /* compare sums to determine if rematrixing will be used for this band */
+ if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
+ block->rematrixing_flags[bnd] = 1;
+ else
+ block->rematrixing_flags[bnd] = 0;
+
+ /* determine if new rematrixing flags will be sent */
+ if (blk &&
+ block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
+ block->new_rematrixing_strategy = 1;
+ }
+ }
+ block0 = block;
+ }
+}
+
+
+int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
+ const AVFrame *frame, int *got_packet_ptr)
+{
+ AC3EncodeContext *s = avctx->priv_data;
+ int ret;
+
+ if (s->options.allow_per_frame_metadata) {
+ ret = ff_ac3_validate_metadata(s);
+ if (ret)
+ return ret;
+ }
+
+ if (s->bit_alloc.sr_code == 1 || s->eac3)
+ ff_ac3_adjust_frame_size(s);
+
+ copy_input_samples(s, (SampleType **)frame->extended_data);
+
+ apply_mdct(s);
+
+ if (s->fixed_point)
+ scale_coefficients(s);
+
+ clip_coefficients(&s->dsp, s->blocks[0].mdct_coef[1],
+ AC3_MAX_COEFS * s->num_blocks * s->channels);
+
+ s->cpl_on = s->cpl_enabled;
+ ff_ac3_compute_coupling_strategy(s);
+
+ if (s->cpl_on)
+ apply_channel_coupling(s);
+
+ compute_rematrixing_strategy(s);
+
+ if (!s->fixed_point)
+ scale_coefficients(s);
+
+ ff_ac3_apply_rematrixing(s);
+
+ ff_ac3_process_exponents(s);
+
+ ret = ff_ac3_compute_bit_allocation(s);
+ if (ret) {
+ av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
+ return ret;
+ }
+
+ ff_ac3_group_exponents(s);
+
+ ff_ac3_quantize_mantissas(s);
+
+ if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size)) < 0)
+ return ret;
+ ff_ac3_output_frame(s, avpkt->data);
+
+ if (frame->pts != AV_NOPTS_VALUE)
+ avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
+
+ *got_packet_ptr = 1;
+ return 0;
+}