diff options
Diffstat (limited to 'ffmpeg/libavcodec/atrac1.c')
| -rw-r--r-- | ffmpeg/libavcodec/atrac1.c | 390 |
1 files changed, 390 insertions, 0 deletions
diff --git a/ffmpeg/libavcodec/atrac1.c b/ffmpeg/libavcodec/atrac1.c new file mode 100644 index 0000000..7c1d1eb --- /dev/null +++ b/ffmpeg/libavcodec/atrac1.c @@ -0,0 +1,390 @@ +/* + * Atrac 1 compatible decoder + * Copyright (c) 2009 Maxim Poliakovski + * Copyright (c) 2009 Benjamin Larsson + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file + * Atrac 1 compatible decoder. + * This decoder handles raw ATRAC1 data and probably SDDS data. + */ + +/* Many thanks to Tim Craig for all the help! */ + +#include <math.h> +#include <stddef.h> +#include <stdio.h> + +#include "libavutil/float_dsp.h" +#include "avcodec.h" +#include "get_bits.h" +#include "fft.h" +#include "internal.h" +#include "sinewin.h" + +#include "atrac.h" +#include "atrac1data.h" + +#define AT1_MAX_BFU 52 ///< max number of block floating units in a sound unit +#define AT1_SU_SIZE 212 ///< number of bytes in a sound unit +#define AT1_SU_SAMPLES 512 ///< number of samples in a sound unit +#define AT1_FRAME_SIZE AT1_SU_SIZE * 2 +#define AT1_SU_MAX_BITS AT1_SU_SIZE * 8 +#define AT1_MAX_CHANNELS 2 + +#define AT1_QMF_BANDS 3 +#define IDX_LOW_BAND 0 +#define IDX_MID_BAND 1 +#define IDX_HIGH_BAND 2 + +/** + * Sound unit struct, one unit is used per channel + */ +typedef struct { + int log2_block_count[AT1_QMF_BANDS]; ///< log2 number of blocks in a band + int num_bfus; ///< number of Block Floating Units + float* spectrum[2]; + DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES]; ///< mdct buffer + DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES]; ///< mdct buffer + DECLARE_ALIGNED(32, float, fst_qmf_delay)[46]; ///< delay line for the 1st stacked QMF filter + DECLARE_ALIGNED(32, float, snd_qmf_delay)[46]; ///< delay line for the 2nd stacked QMF filter + DECLARE_ALIGNED(32, float, last_qmf_delay)[256+23]; ///< delay line for the last stacked QMF filter +} AT1SUCtx; + +/** + * The atrac1 context, holds all needed parameters for decoding + */ +typedef struct { + AT1SUCtx SUs[AT1_MAX_CHANNELS]; ///< channel sound unit + DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES]; ///< the mdct spectrum buffer + + DECLARE_ALIGNED(32, float, low)[256]; + DECLARE_ALIGNED(32, float, mid)[256]; + DECLARE_ALIGNED(32, float, high)[512]; + float* bands[3]; + FFTContext mdct_ctx[3]; + AVFloatDSPContext fdsp; +} AT1Ctx; + +/** size of the transform in samples in the long mode for each QMF band */ +static const uint16_t samples_per_band[3] = {128, 128, 256}; +static const uint8_t mdct_long_nbits[3] = {7, 7, 8}; + + +static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits, + int rev_spec) +{ + FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)]; + int transf_size = 1 << nbits; + + if (rev_spec) { + int i; + for (i = 0; i < transf_size / 2; i++) + FFSWAP(float, spec[i], spec[transf_size - 1 - i]); + } + mdct_context->imdct_half(mdct_context, out, spec); +} + + +static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q) +{ + int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size; + unsigned int start_pos, ref_pos = 0, pos = 0; + + for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) { + float *prev_buf; + int j; + + band_samples = samples_per_band[band_num]; + log2_block_count = su->log2_block_count[band_num]; + + /* number of mdct blocks in the current QMF band: 1 - for long mode */ + /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/ + num_blocks = 1 << log2_block_count; + + if (num_blocks == 1) { + /* mdct block size in samples: 128 (long mode, low & mid bands), */ + /* 256 (long mode, high band) and 32 (short mode, all bands) */ + block_size = band_samples >> log2_block_count; + + /* calc transform size in bits according to the block_size_mode */ + nbits = mdct_long_nbits[band_num] - log2_block_count; + + if (nbits != 5 && nbits != 7 && nbits != 8) + return AVERROR_INVALIDDATA; + } else { + block_size = 32; + nbits = 5; + } + + start_pos = 0; + prev_buf = &su->spectrum[1][ref_pos + band_samples - 16]; + for (j=0; j < num_blocks; j++) { + at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num); + + /* overlap and window */ + q->fdsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf, + &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16); + + prev_buf = &su->spectrum[0][ref_pos+start_pos + 16]; + start_pos += block_size; + pos += block_size; + } + + if (num_blocks == 1) + memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float)); + + ref_pos += band_samples; + } + + /* Swap buffers so the mdct overlap works */ + FFSWAP(float*, su->spectrum[0], su->spectrum[1]); + + return 0; +} + +/** + * Parse the block size mode byte + */ + +static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS]) +{ + int log2_block_count_tmp, i; + + for (i = 0; i < 2; i++) { + /* low and mid band */ + log2_block_count_tmp = get_bits(gb, 2); + if (log2_block_count_tmp & 1) + return AVERROR_INVALIDDATA; + log2_block_cnt[i] = 2 - log2_block_count_tmp; + } + + /* high band */ + log2_block_count_tmp = get_bits(gb, 2); + if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3) + return AVERROR_INVALIDDATA; + log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp; + + skip_bits(gb, 2); + return 0; +} + + +static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su, + float spec[AT1_SU_SAMPLES]) +{ + int bits_used, band_num, bfu_num, i; + uint8_t idwls[AT1_MAX_BFU]; ///< the word length indexes for each BFU + uint8_t idsfs[AT1_MAX_BFU]; ///< the scalefactor indexes for each BFU + + /* parse the info byte (2nd byte) telling how much BFUs were coded */ + su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)]; + + /* calc number of consumed bits: + num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits) + + info_byte_copy(8bits) + log2_block_count_copy(8bits) */ + bits_used = su->num_bfus * 10 + 32 + + bfu_amount_tab2[get_bits(gb, 2)] + + (bfu_amount_tab3[get_bits(gb, 3)] << 1); + + /* get word length index (idwl) for each BFU */ + for (i = 0; i < su->num_bfus; i++) + idwls[i] = get_bits(gb, 4); + + /* get scalefactor index (idsf) for each BFU */ + for (i = 0; i < su->num_bfus; i++) + idsfs[i] = get_bits(gb, 6); + + /* zero idwl/idsf for empty BFUs */ + for (i = su->num_bfus; i < AT1_MAX_BFU; i++) + idwls[i] = idsfs[i] = 0; + + /* read in the spectral data and reconstruct MDCT spectrum of this channel */ + for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) { + for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) { + int pos; + + int num_specs = specs_per_bfu[bfu_num]; + int word_len = !!idwls[bfu_num] + idwls[bfu_num]; + float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]]; + bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */ + + /* check for bitstream overflow */ + if (bits_used > AT1_SU_MAX_BITS) + return AVERROR_INVALIDDATA; + + /* get the position of the 1st spec according to the block size mode */ + pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num]; + + if (word_len) { + float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1); + + for (i = 0; i < num_specs; i++) { + /* read in a quantized spec and convert it to + * signed int and then inverse quantization + */ + spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant; + } + } else { /* word_len = 0 -> empty BFU, zero all specs in the empty BFU */ + memset(&spec[pos], 0, num_specs * sizeof(float)); + } + } + } + + return 0; +} + + +static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut) +{ + float temp[256]; + float iqmf_temp[512 + 46]; + + /* combine low and middle bands */ + ff_atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp); + + /* delay the signal of the high band by 23 samples */ + memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float) * 23); + memcpy(&su->last_qmf_delay[23], q->bands[2], sizeof(float) * 256); + + /* combine (low + middle) and high bands */ + ff_atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp); +} + + +static int atrac1_decode_frame(AVCodecContext *avctx, void *data, + int *got_frame_ptr, AVPacket *avpkt) +{ + AVFrame *frame = data; + const uint8_t *buf = avpkt->data; + int buf_size = avpkt->size; + AT1Ctx *q = avctx->priv_data; + int ch, ret; + GetBitContext gb; + + + if (buf_size < 212 * avctx->channels) { + av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n"); + return AVERROR_INVALIDDATA; + } + + /* get output buffer */ + frame->nb_samples = AT1_SU_SAMPLES; + if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) + return ret; + + for (ch = 0; ch < avctx->channels; ch++) { + AT1SUCtx* su = &q->SUs[ch]; + + init_get_bits(&gb, &buf[212 * ch], 212 * 8); + + /* parse block_size_mode, 1st byte */ + ret = at1_parse_bsm(&gb, su->log2_block_count); + if (ret < 0) + return ret; + + ret = at1_unpack_dequant(&gb, su, q->spec); + if (ret < 0) + return ret; + + ret = at1_imdct_block(su, q); + if (ret < 0) + return ret; + at1_subband_synthesis(q, su, (float *)frame->extended_data[ch]); + } + + *got_frame_ptr = 1; + + return avctx->block_align; +} + + +static av_cold int atrac1_decode_end(AVCodecContext * avctx) +{ + AT1Ctx *q = avctx->priv_data; + + ff_mdct_end(&q->mdct_ctx[0]); + ff_mdct_end(&q->mdct_ctx[1]); + ff_mdct_end(&q->mdct_ctx[2]); + + return 0; +} + + +static av_cold int atrac1_decode_init(AVCodecContext *avctx) +{ + AT1Ctx *q = avctx->priv_data; + int ret; + + avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; + + if (avctx->channels < 1 || avctx->channels > AT1_MAX_CHANNELS) { + av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n", + avctx->channels); + return AVERROR(EINVAL); + } + + if (avctx->block_align <= 0) { + av_log(avctx, AV_LOG_ERROR, "Unsupported block align."); + return AVERROR_PATCHWELCOME; + } + + /* Init the mdct transforms */ + if ((ret = ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15))) || + (ret = ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15))) || + (ret = ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)))) { + av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n"); + atrac1_decode_end(avctx); + return ret; + } + + ff_init_ff_sine_windows(5); + + ff_atrac_generate_tables(); + + avpriv_float_dsp_init(&q->fdsp, avctx->flags & CODEC_FLAG_BITEXACT); + + q->bands[0] = q->low; + q->bands[1] = q->mid; + q->bands[2] = q->high; + + /* Prepare the mdct overlap buffers */ + q->SUs[0].spectrum[0] = q->SUs[0].spec1; + q->SUs[0].spectrum[1] = q->SUs[0].spec2; + q->SUs[1].spectrum[0] = q->SUs[1].spec1; + q->SUs[1].spectrum[1] = q->SUs[1].spec2; + + return 0; +} + + +AVCodec ff_atrac1_decoder = { + .name = "atrac1", + .type = AVMEDIA_TYPE_AUDIO, + .id = AV_CODEC_ID_ATRAC1, + .priv_data_size = sizeof(AT1Ctx), + .init = atrac1_decode_init, + .close = atrac1_decode_end, + .decode = atrac1_decode_frame, + .capabilities = CODEC_CAP_DR1, + .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"), + .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, + AV_SAMPLE_FMT_NONE }, +}; |
