summaryrefslogtreecommitdiff
path: root/ffmpeg/libavcodec/cook.c
diff options
context:
space:
mode:
Diffstat (limited to 'ffmpeg/libavcodec/cook.c')
-rw-r--r--ffmpeg/libavcodec/cook.c1292
1 files changed, 1292 insertions, 0 deletions
diff --git a/ffmpeg/libavcodec/cook.c b/ffmpeg/libavcodec/cook.c
new file mode 100644
index 0000000..08cd401
--- /dev/null
+++ b/ffmpeg/libavcodec/cook.c
@@ -0,0 +1,1292 @@
+/*
+ * COOK compatible decoder
+ * Copyright (c) 2003 Sascha Sommer
+ * Copyright (c) 2005 Benjamin Larsson
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Cook compatible decoder. Bastardization of the G.722.1 standard.
+ * This decoder handles RealNetworks, RealAudio G2 data.
+ * Cook is identified by the codec name cook in RM files.
+ *
+ * To use this decoder, a calling application must supply the extradata
+ * bytes provided from the RM container; 8+ bytes for mono streams and
+ * 16+ for stereo streams (maybe more).
+ *
+ * Codec technicalities (all this assume a buffer length of 1024):
+ * Cook works with several different techniques to achieve its compression.
+ * In the timedomain the buffer is divided into 8 pieces and quantized. If
+ * two neighboring pieces have different quantization index a smooth
+ * quantization curve is used to get a smooth overlap between the different
+ * pieces.
+ * To get to the transformdomain Cook uses a modulated lapped transform.
+ * The transform domain has 50 subbands with 20 elements each. This
+ * means only a maximum of 50*20=1000 coefficients are used out of the 1024
+ * available.
+ */
+
+#include "libavutil/channel_layout.h"
+#include "libavutil/lfg.h"
+#include "avcodec.h"
+#include "get_bits.h"
+#include "dsputil.h"
+#include "bytestream.h"
+#include "fft.h"
+#include "internal.h"
+#include "sinewin.h"
+
+#include "cookdata.h"
+
+/* the different Cook versions */
+#define MONO 0x1000001
+#define STEREO 0x1000002
+#define JOINT_STEREO 0x1000003
+#define MC_COOK 0x2000000 // multichannel Cook, not supported
+
+#define SUBBAND_SIZE 20
+#define MAX_SUBPACKETS 5
+
+typedef struct {
+ int *now;
+ int *previous;
+} cook_gains;
+
+typedef struct {
+ int ch_idx;
+ int size;
+ int num_channels;
+ int cookversion;
+ int subbands;
+ int js_subband_start;
+ int js_vlc_bits;
+ int samples_per_channel;
+ int log2_numvector_size;
+ unsigned int channel_mask;
+ VLC channel_coupling;
+ int joint_stereo;
+ int bits_per_subpacket;
+ int bits_per_subpdiv;
+ int total_subbands;
+ int numvector_size; // 1 << log2_numvector_size;
+
+ float mono_previous_buffer1[1024];
+ float mono_previous_buffer2[1024];
+
+ cook_gains gains1;
+ cook_gains gains2;
+ int gain_1[9];
+ int gain_2[9];
+ int gain_3[9];
+ int gain_4[9];
+} COOKSubpacket;
+
+typedef struct cook {
+ /*
+ * The following 5 functions provide the lowlevel arithmetic on
+ * the internal audio buffers.
+ */
+ void (*scalar_dequant)(struct cook *q, int index, int quant_index,
+ int *subband_coef_index, int *subband_coef_sign,
+ float *mlt_p);
+
+ void (*decouple)(struct cook *q,
+ COOKSubpacket *p,
+ int subband,
+ float f1, float f2,
+ float *decode_buffer,
+ float *mlt_buffer1, float *mlt_buffer2);
+
+ void (*imlt_window)(struct cook *q, float *buffer1,
+ cook_gains *gains_ptr, float *previous_buffer);
+
+ void (*interpolate)(struct cook *q, float *buffer,
+ int gain_index, int gain_index_next);
+
+ void (*saturate_output)(struct cook *q, float *out);
+
+ AVCodecContext* avctx;
+ DSPContext dsp;
+ GetBitContext gb;
+ /* stream data */
+ int num_vectors;
+ int samples_per_channel;
+ /* states */
+ AVLFG random_state;
+ int discarded_packets;
+
+ /* transform data */
+ FFTContext mdct_ctx;
+ float* mlt_window;
+
+ /* VLC data */
+ VLC envelope_quant_index[13];
+ VLC sqvh[7]; // scalar quantization
+
+ /* generatable tables and related variables */
+ int gain_size_factor;
+ float gain_table[23];
+
+ /* data buffers */
+
+ uint8_t* decoded_bytes_buffer;
+ DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
+ float decode_buffer_1[1024];
+ float decode_buffer_2[1024];
+ float decode_buffer_0[1060]; /* static allocation for joint decode */
+
+ const float *cplscales[5];
+ int num_subpackets;
+ COOKSubpacket subpacket[MAX_SUBPACKETS];
+} COOKContext;
+
+static float pow2tab[127];
+static float rootpow2tab[127];
+
+/*************** init functions ***************/
+
+/* table generator */
+static av_cold void init_pow2table(void)
+{
+ int i;
+ for (i = -63; i < 64; i++) {
+ pow2tab[63 + i] = pow(2, i);
+ rootpow2tab[63 + i] = sqrt(pow(2, i));
+ }
+}
+
+/* table generator */
+static av_cold void init_gain_table(COOKContext *q)
+{
+ int i;
+ q->gain_size_factor = q->samples_per_channel / 8;
+ for (i = 0; i < 23; i++)
+ q->gain_table[i] = pow(pow2tab[i + 52],
+ (1.0 / (double) q->gain_size_factor));
+}
+
+
+static av_cold int init_cook_vlc_tables(COOKContext *q)
+{
+ int i, result;
+
+ result = 0;
+ for (i = 0; i < 13; i++) {
+ result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
+ envelope_quant_index_huffbits[i], 1, 1,
+ envelope_quant_index_huffcodes[i], 2, 2, 0);
+ }
+ av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
+ for (i = 0; i < 7; i++) {
+ result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
+ cvh_huffbits[i], 1, 1,
+ cvh_huffcodes[i], 2, 2, 0);
+ }
+
+ for (i = 0; i < q->num_subpackets; i++) {
+ if (q->subpacket[i].joint_stereo == 1) {
+ result |= init_vlc(&q->subpacket[i].channel_coupling, 6,
+ (1 << q->subpacket[i].js_vlc_bits) - 1,
+ ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
+ ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
+ av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
+ }
+ }
+
+ av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
+ return result;
+}
+
+static av_cold int init_cook_mlt(COOKContext *q)
+{
+ int j, ret;
+ int mlt_size = q->samples_per_channel;
+
+ if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
+ return AVERROR(ENOMEM);
+
+ /* Initialize the MLT window: simple sine window. */
+ ff_sine_window_init(q->mlt_window, mlt_size);
+ for (j = 0; j < mlt_size; j++)
+ q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
+
+ /* Initialize the MDCT. */
+ if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
+ av_free(q->mlt_window);
+ return ret;
+ }
+ av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
+ av_log2(mlt_size) + 1);
+
+ return 0;
+}
+
+static av_cold void init_cplscales_table(COOKContext *q)
+{
+ int i;
+ for (i = 0; i < 5; i++)
+ q->cplscales[i] = cplscales[i];
+}
+
+/*************** init functions end ***********/
+
+#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
+#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
+
+/**
+ * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
+ * Why? No idea, some checksum/error detection method maybe.
+ *
+ * Out buffer size: extra bytes are needed to cope with
+ * padding/misalignment.
+ * Subpackets passed to the decoder can contain two, consecutive
+ * half-subpackets, of identical but arbitrary size.
+ * 1234 1234 1234 1234 extraA extraB
+ * Case 1: AAAA BBBB 0 0
+ * Case 2: AAAA ABBB BB-- 3 3
+ * Case 3: AAAA AABB BBBB 2 2
+ * Case 4: AAAA AAAB BBBB BB-- 1 5
+ *
+ * Nice way to waste CPU cycles.
+ *
+ * @param inbuffer pointer to byte array of indata
+ * @param out pointer to byte array of outdata
+ * @param bytes number of bytes
+ */
+static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
+{
+ static const uint32_t tab[4] = {
+ AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
+ AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
+ };
+ int i, off;
+ uint32_t c;
+ const uint32_t *buf;
+ uint32_t *obuf = (uint32_t *) out;
+ /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
+ * I'm too lazy though, should be something like
+ * for (i = 0; i < bitamount / 64; i++)
+ * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
+ * Buffer alignment needs to be checked. */
+
+ off = (intptr_t) inbuffer & 3;
+ buf = (const uint32_t *) (inbuffer - off);
+ c = tab[off];
+ bytes += 3 + off;
+ for (i = 0; i < bytes / 4; i++)
+ obuf[i] = c ^ buf[i];
+
+ return off;
+}
+
+static av_cold int cook_decode_close(AVCodecContext *avctx)
+{
+ int i;
+ COOKContext *q = avctx->priv_data;
+ av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
+
+ /* Free allocated memory buffers. */
+ av_free(q->mlt_window);
+ av_free(q->decoded_bytes_buffer);
+
+ /* Free the transform. */
+ ff_mdct_end(&q->mdct_ctx);
+
+ /* Free the VLC tables. */
+ for (i = 0; i < 13; i++)
+ ff_free_vlc(&q->envelope_quant_index[i]);
+ for (i = 0; i < 7; i++)
+ ff_free_vlc(&q->sqvh[i]);
+ for (i = 0; i < q->num_subpackets; i++)
+ ff_free_vlc(&q->subpacket[i].channel_coupling);
+
+ av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
+
+ return 0;
+}
+
+/**
+ * Fill the gain array for the timedomain quantization.
+ *
+ * @param gb pointer to the GetBitContext
+ * @param gaininfo array[9] of gain indexes
+ */
+static void decode_gain_info(GetBitContext *gb, int *gaininfo)
+{
+ int i, n;
+
+ while (get_bits1(gb)) {
+ /* NOTHING */
+ }
+
+ n = get_bits_count(gb) - 1; // amount of elements*2 to update
+
+ i = 0;
+ while (n--) {
+ int index = get_bits(gb, 3);
+ int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
+
+ while (i <= index)
+ gaininfo[i++] = gain;
+ }
+ while (i <= 8)
+ gaininfo[i++] = 0;
+}
+
+/**
+ * Create the quant index table needed for the envelope.
+ *
+ * @param q pointer to the COOKContext
+ * @param quant_index_table pointer to the array
+ */
+static int decode_envelope(COOKContext *q, COOKSubpacket *p,
+ int *quant_index_table)
+{
+ int i, j, vlc_index;
+
+ quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
+
+ for (i = 1; i < p->total_subbands; i++) {
+ vlc_index = i;
+ if (i >= p->js_subband_start * 2) {
+ vlc_index -= p->js_subband_start;
+ } else {
+ vlc_index /= 2;
+ if (vlc_index < 1)
+ vlc_index = 1;
+ }
+ if (vlc_index > 13)
+ vlc_index = 13; // the VLC tables >13 are identical to No. 13
+
+ j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
+ q->envelope_quant_index[vlc_index - 1].bits, 2);
+ quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
+ if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
+ av_log(q->avctx, AV_LOG_ERROR,
+ "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
+ quant_index_table[i], i);
+ return AVERROR_INVALIDDATA;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * Calculate the category and category_index vector.
+ *
+ * @param q pointer to the COOKContext
+ * @param quant_index_table pointer to the array
+ * @param category pointer to the category array
+ * @param category_index pointer to the category_index array
+ */
+static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
+ int *category, int *category_index)
+{
+ int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
+ int exp_index2[102] = { 0 };
+ int exp_index1[102] = { 0 };
+
+ int tmp_categorize_array[128 * 2] = { 0 };
+ int tmp_categorize_array1_idx = p->numvector_size;
+ int tmp_categorize_array2_idx = p->numvector_size;
+
+ bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
+
+ if (bits_left > q->samples_per_channel)
+ bits_left = q->samples_per_channel +
+ ((bits_left - q->samples_per_channel) * 5) / 8;
+
+ bias = -32;
+
+ /* Estimate bias. */
+ for (i = 32; i > 0; i = i / 2) {
+ num_bits = 0;
+ index = 0;
+ for (j = p->total_subbands; j > 0; j--) {
+ exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
+ index++;
+ num_bits += expbits_tab[exp_idx];
+ }
+ if (num_bits >= bits_left - 32)
+ bias += i;
+ }
+
+ /* Calculate total number of bits. */
+ num_bits = 0;
+ for (i = 0; i < p->total_subbands; i++) {
+ exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
+ num_bits += expbits_tab[exp_idx];
+ exp_index1[i] = exp_idx;
+ exp_index2[i] = exp_idx;
+ }
+ tmpbias1 = tmpbias2 = num_bits;
+
+ for (j = 1; j < p->numvector_size; j++) {
+ if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
+ int max = -999999;
+ index = -1;
+ for (i = 0; i < p->total_subbands; i++) {
+ if (exp_index1[i] < 7) {
+ v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
+ if (v >= max) {
+ max = v;
+ index = i;
+ }
+ }
+ }
+ if (index == -1)
+ break;
+ tmp_categorize_array[tmp_categorize_array1_idx++] = index;
+ tmpbias1 -= expbits_tab[exp_index1[index]] -
+ expbits_tab[exp_index1[index] + 1];
+ ++exp_index1[index];
+ } else { /* <--- */
+ int min = 999999;
+ index = -1;
+ for (i = 0; i < p->total_subbands; i++) {
+ if (exp_index2[i] > 0) {
+ v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
+ if (v < min) {
+ min = v;
+ index = i;
+ }
+ }
+ }
+ if (index == -1)
+ break;
+ tmp_categorize_array[--tmp_categorize_array2_idx] = index;
+ tmpbias2 -= expbits_tab[exp_index2[index]] -
+ expbits_tab[exp_index2[index] - 1];
+ --exp_index2[index];
+ }
+ }
+
+ for (i = 0; i < p->total_subbands; i++)
+ category[i] = exp_index2[i];
+
+ for (i = 0; i < p->numvector_size - 1; i++)
+ category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
+}
+
+
+/**
+ * Expand the category vector.
+ *
+ * @param q pointer to the COOKContext
+ * @param category pointer to the category array
+ * @param category_index pointer to the category_index array
+ */
+static inline void expand_category(COOKContext *q, int *category,
+ int *category_index)
+{
+ int i;
+ for (i = 0; i < q->num_vectors; i++)
+ {
+ int idx = category_index[i];
+ if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
+ --category[idx];
+ }
+}
+
+/**
+ * The real requantization of the mltcoefs
+ *
+ * @param q pointer to the COOKContext
+ * @param index index
+ * @param quant_index quantisation index
+ * @param subband_coef_index array of indexes to quant_centroid_tab
+ * @param subband_coef_sign signs of coefficients
+ * @param mlt_p pointer into the mlt buffer
+ */
+static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
+ int *subband_coef_index, int *subband_coef_sign,
+ float *mlt_p)
+{
+ int i;
+ float f1;
+
+ for (i = 0; i < SUBBAND_SIZE; i++) {
+ if (subband_coef_index[i]) {
+ f1 = quant_centroid_tab[index][subband_coef_index[i]];
+ if (subband_coef_sign[i])
+ f1 = -f1;
+ } else {
+ /* noise coding if subband_coef_index[i] == 0 */
+ f1 = dither_tab[index];
+ if (av_lfg_get(&q->random_state) < 0x80000000)
+ f1 = -f1;
+ }
+ mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
+ }
+}
+/**
+ * Unpack the subband_coef_index and subband_coef_sign vectors.
+ *
+ * @param q pointer to the COOKContext
+ * @param category pointer to the category array
+ * @param subband_coef_index array of indexes to quant_centroid_tab
+ * @param subband_coef_sign signs of coefficients
+ */
+static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
+ int *subband_coef_index, int *subband_coef_sign)
+{
+ int i, j;
+ int vlc, vd, tmp, result;
+
+ vd = vd_tab[category];
+ result = 0;
+ for (i = 0; i < vpr_tab[category]; i++) {
+ vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
+ if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
+ vlc = 0;
+ result = 1;
+ }
+ for (j = vd - 1; j >= 0; j--) {
+ tmp = (vlc * invradix_tab[category]) / 0x100000;
+ subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
+ vlc = tmp;
+ }
+ for (j = 0; j < vd; j++) {
+ if (subband_coef_index[i * vd + j]) {
+ if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
+ subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
+ } else {
+ result = 1;
+ subband_coef_sign[i * vd + j] = 0;
+ }
+ } else {
+ subband_coef_sign[i * vd + j] = 0;
+ }
+ }
+ }
+ return result;
+}
+
+
+/**
+ * Fill the mlt_buffer with mlt coefficients.
+ *
+ * @param q pointer to the COOKContext
+ * @param category pointer to the category array
+ * @param quant_index_table pointer to the array
+ * @param mlt_buffer pointer to mlt coefficients
+ */
+static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
+ int *quant_index_table, float *mlt_buffer)
+{
+ /* A zero in this table means that the subband coefficient is
+ random noise coded. */
+ int subband_coef_index[SUBBAND_SIZE];
+ /* A zero in this table means that the subband coefficient is a
+ positive multiplicator. */
+ int subband_coef_sign[SUBBAND_SIZE];
+ int band, j;
+ int index = 0;
+
+ for (band = 0; band < p->total_subbands; band++) {
+ index = category[band];
+ if (category[band] < 7) {
+ if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
+ index = 7;
+ for (j = 0; j < p->total_subbands; j++)
+ category[band + j] = 7;
+ }
+ }
+ if (index >= 7) {
+ memset(subband_coef_index, 0, sizeof(subband_coef_index));
+ memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
+ }
+ q->scalar_dequant(q, index, quant_index_table[band],
+ subband_coef_index, subband_coef_sign,
+ &mlt_buffer[band * SUBBAND_SIZE]);
+ }
+
+ /* FIXME: should this be removed, or moved into loop above? */
+ if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
+ return;
+}
+
+
+static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
+{
+ int category_index[128] = { 0 };
+ int category[128] = { 0 };
+ int quant_index_table[102];
+ int res, i;
+
+ if ((res = decode_envelope(q, p, quant_index_table)) < 0)
+ return res;
+ q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
+ categorize(q, p, quant_index_table, category, category_index);
+ expand_category(q, category, category_index);
+ for (i=0; i<p->total_subbands; i++) {
+ if (category[i] > 7)
+ return AVERROR_INVALIDDATA;
+ }
+ decode_vectors(q, p, category, quant_index_table, mlt_buffer);
+
+ return 0;
+}
+
+
+/**
+ * the actual requantization of the timedomain samples
+ *
+ * @param q pointer to the COOKContext
+ * @param buffer pointer to the timedomain buffer
+ * @param gain_index index for the block multiplier
+ * @param gain_index_next index for the next block multiplier
+ */
+static void interpolate_float(COOKContext *q, float *buffer,
+ int gain_index, int gain_index_next)
+{
+ int i;
+ float fc1, fc2;
+ fc1 = pow2tab[gain_index + 63];
+
+ if (gain_index == gain_index_next) { // static gain
+ for (i = 0; i < q->gain_size_factor; i++)
+ buffer[i] *= fc1;
+ } else { // smooth gain
+ fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
+ for (i = 0; i < q->gain_size_factor; i++) {
+ buffer[i] *= fc1;
+ fc1 *= fc2;
+ }
+ }
+}
+
+/**
+ * Apply transform window, overlap buffers.
+ *
+ * @param q pointer to the COOKContext
+ * @param inbuffer pointer to the mltcoefficients
+ * @param gains_ptr current and previous gains
+ * @param previous_buffer pointer to the previous buffer to be used for overlapping
+ */
+static void imlt_window_float(COOKContext *q, float *inbuffer,
+ cook_gains *gains_ptr, float *previous_buffer)
+{
+ const float fc = pow2tab[gains_ptr->previous[0] + 63];
+ int i;
+ /* The weird thing here, is that the two halves of the time domain
+ * buffer are swapped. Also, the newest data, that we save away for
+ * next frame, has the wrong sign. Hence the subtraction below.
+ * Almost sounds like a complex conjugate/reverse data/FFT effect.
+ */
+
+ /* Apply window and overlap */
+ for (i = 0; i < q->samples_per_channel; i++)
+ inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
+ previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
+}
+
+/**
+ * The modulated lapped transform, this takes transform coefficients
+ * and transforms them into timedomain samples.
+ * Apply transform window, overlap buffers, apply gain profile
+ * and buffer management.
+ *
+ * @param q pointer to the COOKContext
+ * @param inbuffer pointer to the mltcoefficients
+ * @param gains_ptr current and previous gains
+ * @param previous_buffer pointer to the previous buffer to be used for overlapping
+ */
+static void imlt_gain(COOKContext *q, float *inbuffer,
+ cook_gains *gains_ptr, float *previous_buffer)
+{
+ float *buffer0 = q->mono_mdct_output;
+ float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
+ int i;
+
+ /* Inverse modified discrete cosine transform */
+ q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
+
+ q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
+
+ /* Apply gain profile */
+ for (i = 0; i < 8; i++)
+ if (gains_ptr->now[i] || gains_ptr->now[i + 1])
+ q->interpolate(q, &buffer1[q->gain_size_factor * i],
+ gains_ptr->now[i], gains_ptr->now[i + 1]);
+
+ /* Save away the current to be previous block. */
+ memcpy(previous_buffer, buffer0,
+ q->samples_per_channel * sizeof(*previous_buffer));
+}
+
+
+/**
+ * function for getting the jointstereo coupling information
+ *
+ * @param q pointer to the COOKContext
+ * @param decouple_tab decoupling array
+ */
+static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
+{
+ int i;
+ int vlc = get_bits1(&q->gb);
+ int start = cplband[p->js_subband_start];
+ int end = cplband[p->subbands - 1];
+ int length = end - start + 1;
+
+ if (start > end)
+ return 0;
+
+ if (vlc)
+ for (i = 0; i < length; i++)
+ decouple_tab[start + i] = get_vlc2(&q->gb,
+ p->channel_coupling.table,
+ p->channel_coupling.bits, 2);
+ else
+ for (i = 0; i < length; i++) {
+ int v = get_bits(&q->gb, p->js_vlc_bits);
+ if (v == (1<<p->js_vlc_bits)-1) {
+ av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
+ return AVERROR_INVALIDDATA;
+ }
+ decouple_tab[start + i] = v;
+ }
+ return 0;
+}
+
+/**
+ * function decouples a pair of signals from a single signal via multiplication.
+ *
+ * @param q pointer to the COOKContext
+ * @param subband index of the current subband
+ * @param f1 multiplier for channel 1 extraction
+ * @param f2 multiplier for channel 2 extraction
+ * @param decode_buffer input buffer
+ * @param mlt_buffer1 pointer to left channel mlt coefficients
+ * @param mlt_buffer2 pointer to right channel mlt coefficients
+ */
+static void decouple_float(COOKContext *q,
+ COOKSubpacket *p,
+ int subband,
+ float f1, float f2,
+ float *decode_buffer,
+ float *mlt_buffer1, float *mlt_buffer2)
+{
+ int j, tmp_idx;
+ for (j = 0; j < SUBBAND_SIZE; j++) {
+ tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
+ mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
+ mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
+ }
+}
+
+/**
+ * function for decoding joint stereo data
+ *
+ * @param q pointer to the COOKContext
+ * @param mlt_buffer1 pointer to left channel mlt coefficients
+ * @param mlt_buffer2 pointer to right channel mlt coefficients
+ */
+static int joint_decode(COOKContext *q, COOKSubpacket *p,
+ float *mlt_buffer_left, float *mlt_buffer_right)
+{
+ int i, j, res;
+ int decouple_tab[SUBBAND_SIZE] = { 0 };
+ float *decode_buffer = q->decode_buffer_0;
+ int idx, cpl_tmp;
+ float f1, f2;
+ const float *cplscale;
+
+ memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
+
+ /* Make sure the buffers are zeroed out. */
+ memset(mlt_buffer_left, 0, 1024 * sizeof(*mlt_buffer_left));
+ memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
+ if ((res = decouple_info(q, p, decouple_tab)) < 0)
+ return res;
+ if ((res = mono_decode(q, p, decode_buffer)) < 0)
+ return res;
+ /* The two channels are stored interleaved in decode_buffer. */
+ for (i = 0; i < p->js_subband_start; i++) {
+ for (j = 0; j < SUBBAND_SIZE; j++) {
+ mlt_buffer_left[i * 20 + j] = decode_buffer[i * 40 + j];
+ mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
+ }
+ }
+
+ /* When we reach js_subband_start (the higher frequencies)
+ the coefficients are stored in a coupling scheme. */
+ idx = (1 << p->js_vlc_bits) - 1;
+ for (i = p->js_subband_start; i < p->subbands; i++) {
+ cpl_tmp = cplband[i];
+ idx -= decouple_tab[cpl_tmp];
+ cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
+ f1 = cplscale[decouple_tab[cpl_tmp] + 1];
+ f2 = cplscale[idx];
+ q->decouple(q, p, i, f1, f2, decode_buffer,
+ mlt_buffer_left, mlt_buffer_right);
+ idx = (1 << p->js_vlc_bits) - 1;
+ }
+
+ return 0;
+}
+
+/**
+ * First part of subpacket decoding:
+ * decode raw stream bytes and read gain info.
+ *
+ * @param q pointer to the COOKContext
+ * @param inbuffer pointer to raw stream data
+ * @param gains_ptr array of current/prev gain pointers
+ */
+static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
+ const uint8_t *inbuffer,
+ cook_gains *gains_ptr)
+{
+ int offset;
+
+ offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
+ p->bits_per_subpacket / 8);
+ init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
+ p->bits_per_subpacket);
+ decode_gain_info(&q->gb, gains_ptr->now);
+
+ /* Swap current and previous gains */
+ FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
+}
+
+/**
+ * Saturate the output signal and interleave.
+ *
+ * @param q pointer to the COOKContext
+ * @param out pointer to the output vector
+ */
+static void saturate_output_float(COOKContext *q, float *out)
+{
+ q->dsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
+ -1.0f, 1.0f, FFALIGN(q->samples_per_channel, 8));
+}
+
+
+/**
+ * Final part of subpacket decoding:
+ * Apply modulated lapped transform, gain compensation,
+ * clip and convert to integer.
+ *
+ * @param q pointer to the COOKContext
+ * @param decode_buffer pointer to the mlt coefficients
+ * @param gains_ptr array of current/prev gain pointers
+ * @param previous_buffer pointer to the previous buffer to be used for overlapping
+ * @param out pointer to the output buffer
+ */
+static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
+ cook_gains *gains_ptr, float *previous_buffer,
+ float *out)
+{
+ imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
+ if (out)
+ q->saturate_output(q, out);
+}
+
+
+/**
+ * Cook subpacket decoding. This function returns one decoded subpacket,
+ * usually 1024 samples per channel.
+ *
+ * @param q pointer to the COOKContext
+ * @param inbuffer pointer to the inbuffer
+ * @param outbuffer pointer to the outbuffer
+ */
+static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
+ const uint8_t *inbuffer, float **outbuffer)
+{
+ int sub_packet_size = p->size;
+ int res;
+
+ memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
+ decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
+
+ if (p->joint_stereo) {
+ if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
+ return res;
+ } else {
+ if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
+ return res;
+
+ if (p->num_channels == 2) {
+ decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
+ if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
+ return res;
+ }
+ }
+
+ mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
+ p->mono_previous_buffer1,
+ outbuffer ? outbuffer[p->ch_idx] : NULL);
+
+ if (p->num_channels == 2) {
+ if (p->joint_stereo)
+ mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
+ p->mono_previous_buffer2,
+ outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
+ else
+ mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
+ p->mono_previous_buffer2,
+ outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
+ }
+
+ return 0;
+}
+
+
+static int cook_decode_frame(AVCodecContext *avctx, void *data,
+ int *got_frame_ptr, AVPacket *avpkt)
+{
+ AVFrame *frame = data;
+ const uint8_t *buf = avpkt->data;
+ int buf_size = avpkt->size;
+ COOKContext *q = avctx->priv_data;
+ float **samples = NULL;
+ int i, ret;
+ int offset = 0;
+ int chidx = 0;
+
+ if (buf_size < avctx->block_align)
+ return buf_size;
+
+ /* get output buffer */
+ if (q->discarded_packets >= 2) {
+ frame->nb_samples = q->samples_per_channel;
+ if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
+ return ret;
+ samples = (float **)frame->extended_data;
+ }
+
+ /* estimate subpacket sizes */
+ q->subpacket[0].size = avctx->block_align;
+
+ for (i = 1; i < q->num_subpackets; i++) {
+ q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
+ q->subpacket[0].size -= q->subpacket[i].size + 1;
+ if (q->subpacket[0].size < 0) {
+ av_log(avctx, AV_LOG_DEBUG,
+ "frame subpacket size total > avctx->block_align!\n");
+ return AVERROR_INVALIDDATA;
+ }
+ }
+
+ /* decode supbackets */
+ for (i = 0; i < q->num_subpackets; i++) {
+ q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
+ q->subpacket[i].bits_per_subpdiv;
+ q->subpacket[i].ch_idx = chidx;
+ av_log(avctx, AV_LOG_DEBUG,
+ "subpacket[%i] size %i js %i %i block_align %i\n",
+ i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
+ avctx->block_align);
+
+ if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
+ return ret;
+ offset += q->subpacket[i].size;
+ chidx += q->subpacket[i].num_channels;
+ av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
+ i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
+ }
+
+ /* Discard the first two frames: no valid audio. */
+ if (q->discarded_packets < 2) {
+ q->discarded_packets++;
+ *got_frame_ptr = 0;
+ return avctx->block_align;
+ }
+
+ *got_frame_ptr = 1;
+
+ return avctx->block_align;
+}
+
+#ifdef DEBUG
+static void dump_cook_context(COOKContext *q)
+{
+ //int i=0;
+#define PRINT(a, b) av_dlog(q->avctx, " %s = %d\n", a, b);
+ av_dlog(q->avctx, "COOKextradata\n");
+ av_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
+ if (q->subpacket[0].cookversion > STEREO) {
+ PRINT("js_subband_start", q->subpacket[0].js_subband_start);
+ PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
+ }
+ av_dlog(q->avctx, "COOKContext\n");
+ PRINT("nb_channels", q->avctx->channels);
+ PRINT("bit_rate", q->avctx->bit_rate);
+ PRINT("sample_rate", q->avctx->sample_rate);
+ PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
+ PRINT("subbands", q->subpacket[0].subbands);
+ PRINT("js_subband_start", q->subpacket[0].js_subband_start);
+ PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
+ PRINT("numvector_size", q->subpacket[0].numvector_size);
+ PRINT("total_subbands", q->subpacket[0].total_subbands);
+}
+#endif
+
+/**
+ * Cook initialization
+ *
+ * @param avctx pointer to the AVCodecContext
+ */
+static av_cold int cook_decode_init(AVCodecContext *avctx)
+{
+ COOKContext *q = avctx->priv_data;
+ const uint8_t *edata_ptr = avctx->extradata;
+ const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
+ int extradata_size = avctx->extradata_size;
+ int s = 0;
+ unsigned int channel_mask = 0;
+ int samples_per_frame = 0;
+ int ret;
+ q->avctx = avctx;
+
+ /* Take care of the codec specific extradata. */
+ if (extradata_size <= 0) {
+ av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
+ return AVERROR_INVALIDDATA;
+ }
+ av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
+
+ /* Take data from the AVCodecContext (RM container). */
+ if (!avctx->channels) {
+ av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ /* Initialize RNG. */
+ av_lfg_init(&q->random_state, 0);
+
+ ff_dsputil_init(&q->dsp, avctx);
+
+ while (edata_ptr < edata_ptr_end) {
+ /* 8 for mono, 16 for stereo, ? for multichannel
+ Swap to right endianness so we don't need to care later on. */
+ if (extradata_size >= 8) {
+ q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
+ samples_per_frame = bytestream_get_be16(&edata_ptr);
+ q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
+ extradata_size -= 8;
+ }
+ if (extradata_size >= 8) {
+ bytestream_get_be32(&edata_ptr); // Unknown unused
+ q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
+ if (q->subpacket[s].js_subband_start >= 51) {
+ av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
+ return AVERROR_INVALIDDATA;
+ }
+
+ q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
+ extradata_size -= 8;
+ }
+
+ /* Initialize extradata related variables. */
+ q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
+ q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
+
+ /* Initialize default data states. */
+ q->subpacket[s].log2_numvector_size = 5;
+ q->subpacket[s].total_subbands = q->subpacket[s].subbands;
+ q->subpacket[s].num_channels = 1;
+
+ /* Initialize version-dependent variables */
+
+ av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
+ q->subpacket[s].cookversion);
+ q->subpacket[s].joint_stereo = 0;
+ switch (q->subpacket[s].cookversion) {
+ case MONO:
+ if (avctx->channels != 1) {
+ avpriv_request_sample(avctx, "Container channels != 1");
+ return AVERROR_PATCHWELCOME;
+ }
+ av_log(avctx, AV_LOG_DEBUG, "MONO\n");
+ break;
+ case STEREO:
+ if (avctx->channels != 1) {
+ q->subpacket[s].bits_per_subpdiv = 1;
+ q->subpacket[s].num_channels = 2;
+ }
+ av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
+ break;
+ case JOINT_STEREO:
+ if (avctx->channels != 2) {
+ avpriv_request_sample(avctx, "Container channels != 2");
+ return AVERROR_PATCHWELCOME;
+ }
+ av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
+ if (avctx->extradata_size >= 16) {
+ q->subpacket[s].total_subbands = q->subpacket[s].subbands +
+ q->subpacket[s].js_subband_start;
+ q->subpacket[s].joint_stereo = 1;
+ q->subpacket[s].num_channels = 2;
+ }
+ if (q->subpacket[s].samples_per_channel > 256) {
+ q->subpacket[s].log2_numvector_size = 6;
+ }
+ if (q->subpacket[s].samples_per_channel > 512) {
+ q->subpacket[s].log2_numvector_size = 7;
+ }
+ break;
+ case MC_COOK:
+ av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
+ if (extradata_size >= 4)
+ channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
+
+ if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
+ q->subpacket[s].total_subbands = q->subpacket[s].subbands +
+ q->subpacket[s].js_subband_start;
+ q->subpacket[s].joint_stereo = 1;
+ q->subpacket[s].num_channels = 2;
+ q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
+
+ if (q->subpacket[s].samples_per_channel > 256) {
+ q->subpacket[s].log2_numvector_size = 6;
+ }
+ if (q->subpacket[s].samples_per_channel > 512) {
+ q->subpacket[s].log2_numvector_size = 7;
+ }
+ } else
+ q->subpacket[s].samples_per_channel = samples_per_frame;
+
+ break;
+ default:
+ avpriv_request_sample(avctx, "Cook version %d",
+ q->subpacket[s].cookversion);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
+ av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
+ return AVERROR_INVALIDDATA;
+ } else
+ q->samples_per_channel = q->subpacket[0].samples_per_channel;
+
+
+ /* Initialize variable relations */
+ q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
+
+ /* Try to catch some obviously faulty streams, othervise it might be exploitable */
+ if (q->subpacket[s].total_subbands > 53) {
+ avpriv_request_sample(avctx, "total_subbands > 53");
+ return AVERROR_PATCHWELCOME;
+ }
+
+ if ((q->subpacket[s].js_vlc_bits > 6) ||
+ (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
+ av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
+ q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
+ return AVERROR_INVALIDDATA;
+ }
+
+ if (q->subpacket[s].subbands > 50) {
+ avpriv_request_sample(avctx, "subbands > 50");
+ return AVERROR_PATCHWELCOME;
+ }
+ if (q->subpacket[s].subbands == 0) {
+ avpriv_request_sample(avctx, "subbands = 0");
+ return AVERROR_PATCHWELCOME;
+ }
+ q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
+ q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
+ q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
+ q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
+
+ if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) {
+ av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
+ return AVERROR_INVALIDDATA;
+ }
+
+ q->num_subpackets++;
+ s++;
+ if (s > MAX_SUBPACKETS) {
+ avpriv_request_sample(avctx, "subpackets > %d", MAX_SUBPACKETS);
+ return AVERROR_PATCHWELCOME;
+ }
+ }
+ /* Generate tables */
+ init_pow2table();
+ init_gain_table(q);
+ init_cplscales_table(q);
+
+ if ((ret = init_cook_vlc_tables(q)))
+ return ret;
+
+
+ if (avctx->block_align >= UINT_MAX / 2)
+ return AVERROR(EINVAL);
+
+ /* Pad the databuffer with:
+ DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
+ FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
+ q->decoded_bytes_buffer =
+ av_mallocz(avctx->block_align
+ + DECODE_BYTES_PAD1(avctx->block_align)
+ + FF_INPUT_BUFFER_PADDING_SIZE);
+ if (q->decoded_bytes_buffer == NULL)
+ return AVERROR(ENOMEM);
+
+ /* Initialize transform. */
+ if ((ret = init_cook_mlt(q)))
+ return ret;
+
+ /* Initialize COOK signal arithmetic handling */
+ if (1) {
+ q->scalar_dequant = scalar_dequant_float;
+ q->decouple = decouple_float;
+ q->imlt_window = imlt_window_float;
+ q->interpolate = interpolate_float;
+ q->saturate_output = saturate_output_float;
+ }
+
+ /* Try to catch some obviously faulty streams, othervise it might be exploitable */
+ if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
+ q->samples_per_channel != 1024) {
+ avpriv_request_sample(avctx, "samples_per_channel = %d",
+ q->samples_per_channel);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
+ if (channel_mask)
+ avctx->channel_layout = channel_mask;
+ else
+ avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
+
+#ifdef DEBUG
+ dump_cook_context(q);
+#endif
+ return 0;
+}
+
+AVCodec ff_cook_decoder = {
+ .name = "cook",
+ .type = AVMEDIA_TYPE_AUDIO,
+ .id = AV_CODEC_ID_COOK,
+ .priv_data_size = sizeof(COOKContext),
+ .init = cook_decode_init,
+ .close = cook_decode_close,
+ .decode = cook_decode_frame,
+ .capabilities = CODEC_CAP_DR1,
+ .long_name = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
+ .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
+ AV_SAMPLE_FMT_NONE },
+};