summaryrefslogtreecommitdiff
path: root/ffmpeg/libavcodec/lpc.c
diff options
context:
space:
mode:
Diffstat (limited to 'ffmpeg/libavcodec/lpc.c')
-rw-r--r--ffmpeg/libavcodec/lpc.c287
1 files changed, 287 insertions, 0 deletions
diff --git a/ffmpeg/libavcodec/lpc.c b/ffmpeg/libavcodec/lpc.c
new file mode 100644
index 0000000..4149135
--- /dev/null
+++ b/ffmpeg/libavcodec/lpc.c
@@ -0,0 +1,287 @@
+/*
+ * LPC utility code
+ * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "libavutil/common.h"
+#include "libavutil/lls.h"
+
+#define LPC_USE_DOUBLE
+#include "lpc.h"
+#include "libavutil/avassert.h"
+
+
+/**
+ * Apply Welch window function to audio block
+ */
+static void lpc_apply_welch_window_c(const int32_t *data, int len,
+ double *w_data)
+{
+ int i, n2;
+ double w;
+ double c;
+
+ /* The optimization in commit fa4ed8c does not support odd len.
+ * If someone wants odd len extend that change. */
+ av_assert2(!(len & 1));
+
+ n2 = (len >> 1);
+ c = 2.0 / (len - 1.0);
+
+ w_data+=n2;
+ data+=n2;
+ for(i=0; i<n2; i++) {
+ w = c - n2 + i;
+ w = 1.0 - (w * w);
+ w_data[-i-1] = data[-i-1] * w;
+ w_data[+i ] = data[+i ] * w;
+ }
+}
+
+/**
+ * Calculate autocorrelation data from audio samples
+ * A Welch window function is applied before calculation.
+ */
+static void lpc_compute_autocorr_c(const double *data, int len, int lag,
+ double *autoc)
+{
+ int i, j;
+
+ for(j=0; j<lag; j+=2){
+ double sum0 = 1.0, sum1 = 1.0;
+ for(i=j; i<len; i++){
+ sum0 += data[i] * data[i-j];
+ sum1 += data[i] * data[i-j-1];
+ }
+ autoc[j ] = sum0;
+ autoc[j+1] = sum1;
+ }
+
+ if(j==lag){
+ double sum = 1.0;
+ for(i=j-1; i<len; i+=2){
+ sum += data[i ] * data[i-j ]
+ + data[i+1] * data[i-j+1];
+ }
+ autoc[j] = sum;
+ }
+}
+
+/**
+ * Quantize LPC coefficients
+ */
+static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
+ int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
+{
+ int i;
+ double cmax, error;
+ int32_t qmax;
+ int sh;
+
+ /* define maximum levels */
+ qmax = (1 << (precision - 1)) - 1;
+
+ /* find maximum coefficient value */
+ cmax = 0.0;
+ for(i=0; i<order; i++) {
+ cmax= FFMAX(cmax, fabs(lpc_in[i]));
+ }
+
+ /* if maximum value quantizes to zero, return all zeros */
+ if(cmax * (1 << max_shift) < 1.0) {
+ *shift = zero_shift;
+ memset(lpc_out, 0, sizeof(int32_t) * order);
+ return;
+ }
+
+ /* calculate level shift which scales max coeff to available bits */
+ sh = max_shift;
+ while((cmax * (1 << sh) > qmax) && (sh > 0)) {
+ sh--;
+ }
+
+ /* since negative shift values are unsupported in decoder, scale down
+ coefficients instead */
+ if(sh == 0 && cmax > qmax) {
+ double scale = ((double)qmax) / cmax;
+ for(i=0; i<order; i++) {
+ lpc_in[i] *= scale;
+ }
+ }
+
+ /* output quantized coefficients and level shift */
+ error=0;
+ for(i=0; i<order; i++) {
+ error -= lpc_in[i] * (1 << sh);
+ lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
+ error -= lpc_out[i];
+ }
+ *shift = sh;
+}
+
+static int estimate_best_order(double *ref, int min_order, int max_order)
+{
+ int i, est;
+
+ est = min_order;
+ for(i=max_order-1; i>=min_order-1; i--) {
+ if(ref[i] > 0.10) {
+ est = i+1;
+ break;
+ }
+ }
+ return est;
+}
+
+int ff_lpc_calc_ref_coefs(LPCContext *s,
+ const int32_t *samples, int order, double *ref)
+{
+ double autoc[MAX_LPC_ORDER + 1];
+
+ s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
+ s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
+ compute_ref_coefs(autoc, order, ref, NULL);
+
+ return order;
+}
+
+/**
+ * Calculate LPC coefficients for multiple orders
+ *
+ * @param lpc_type LPC method for determining coefficients,
+ * see #FFLPCType for details
+ */
+int ff_lpc_calc_coefs(LPCContext *s,
+ const int32_t *samples, int blocksize, int min_order,
+ int max_order, int precision,
+ int32_t coefs[][MAX_LPC_ORDER], int *shift,
+ enum FFLPCType lpc_type, int lpc_passes,
+ int omethod, int max_shift, int zero_shift)
+{
+ double autoc[MAX_LPC_ORDER+1];
+ double ref[MAX_LPC_ORDER];
+ double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
+ int i, j, pass;
+ int opt_order;
+
+ av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
+ lpc_type > FF_LPC_TYPE_FIXED);
+
+ /* reinit LPC context if parameters have changed */
+ if (blocksize != s->blocksize || max_order != s->max_order ||
+ lpc_type != s->lpc_type) {
+ ff_lpc_end(s);
+ ff_lpc_init(s, blocksize, max_order, lpc_type);
+ }
+
+ if (lpc_type == FF_LPC_TYPE_LEVINSON) {
+ s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
+
+ s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
+
+ compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
+
+ for(i=0; i<max_order; i++)
+ ref[i] = fabs(lpc[i][i]);
+ } else if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
+ LLSModel m[2];
+ double var[MAX_LPC_ORDER+1], av_uninit(weight);
+
+ if(lpc_passes <= 0)
+ lpc_passes = 2;
+
+ for(pass=0; pass<lpc_passes; pass++){
+ avpriv_init_lls(&m[pass&1], max_order);
+
+ weight=0;
+ for(i=max_order; i<blocksize; i++){
+ for(j=0; j<=max_order; j++)
+ var[j]= samples[i-j];
+
+ if(pass){
+ double eval, inv, rinv;
+ eval= avpriv_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
+ eval= (512>>pass) + fabs(eval - var[0]);
+ inv = 1/eval;
+ rinv = sqrt(inv);
+ for(j=0; j<=max_order; j++)
+ var[j] *= rinv;
+ weight += inv;
+ }else
+ weight++;
+
+ avpriv_update_lls(&m[pass&1], var, 1.0);
+ }
+ avpriv_solve_lls(&m[pass&1], 0.001, 0);
+ }
+
+ for(i=0; i<max_order; i++){
+ for(j=0; j<max_order; j++)
+ lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
+ ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
+ }
+ for(i=max_order-1; i>0; i--)
+ ref[i] = ref[i-1] - ref[i];
+ } else
+ av_assert0(0);
+ opt_order = max_order;
+
+ if(omethod == ORDER_METHOD_EST) {
+ opt_order = estimate_best_order(ref, min_order, max_order);
+ i = opt_order-1;
+ quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
+ } else {
+ for(i=min_order-1; i<max_order; i++) {
+ quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
+ }
+ }
+
+ return opt_order;
+}
+
+av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
+ enum FFLPCType lpc_type)
+{
+ s->blocksize = blocksize;
+ s->max_order = max_order;
+ s->lpc_type = lpc_type;
+
+ if (lpc_type == FF_LPC_TYPE_LEVINSON) {
+ s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
+ sizeof(*s->windowed_samples));
+ if (!s->windowed_buffer)
+ return AVERROR(ENOMEM);
+ s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
+ } else {
+ s->windowed_samples = NULL;
+ }
+
+ s->lpc_apply_welch_window = lpc_apply_welch_window_c;
+ s->lpc_compute_autocorr = lpc_compute_autocorr_c;
+
+ if (ARCH_X86)
+ ff_lpc_init_x86(s);
+
+ return 0;
+}
+
+av_cold void ff_lpc_end(LPCContext *s)
+{
+ av_freep(&s->windowed_buffer);
+}