#ifndef ROTOR_MATHS #define ROTOR_MATHS #include "rotor.h" #include #include #include "Poco/Logger.h" namespace Rotor { #define COMPARISON_Equal 1 #define COMPARISON_Not_equal 2 #define COMPARISON_Greater 3 #define COMPARISON_Less 4 #define COMPARISON_Greater_or_equal 5 #define COMPARISON_Less_or_equal 6 class Comparison: public Signal_node { public: Comparison(){ create_signal_input("signal","Signal"); create_parameter("value","number","Value or signal for operation","Value",0.0f); create_attribute("operator","Operator for comparison","operator","==",{"==","!=",">","<",">=","<="}); description="Compares the signal with a value or signal according to the operator"; }; Comparison(map &settings):Comparison() { base_settings(settings); } Comparison* clone(map &_settings) { return new Comparison(_settings);}; const float output(const Time_spec &time) { switch (attributes["operator"]->intVal) { case COMPARISON_Equal: return fequal(parameters["value"]->value,inputs[0]->get(time))?1.0f:0.0f; break; case COMPARISON_Not_equal: return fequal(parameters["value"]->value,inputs[0]->get(time))?0.0f:1.0f; break; case COMPARISON_Greater: return fgreater(parameters["value"]->value,inputs[0]->get(time))?1.0f:0.0f; break; case COMPARISON_Less: return fless(parameters["value"]->value,inputs[0]->get(time))?1.0f:0.0f; break; case COMPARISON_Greater_or_equal: return fgreater_or_equal(parameters["value"]->value,inputs[0]->get(time))?1.0f:0.0f; break; case COMPARISON_Less_or_equal: return fless_or_equal(parameters["value"]->value,inputs[0]->get(time))?1.0f:0.0f; break; } return 0.0f; } }; #define ARITHMETIC_plus 1 #define ARITHMETIC_minus 2 #define ARITHMETIC_multiply 3 #define ARITHMETIC_divide 4 #define ARITHMETIC_modulo 5 #define ARITHMETIC_pow 6 #define ARITHMETIC_sin 7 #define ARITHMETIC_cos 8 #define ARITHMETIC_ease 9 #define ARITHMETIC_jolt 10 class Arithmetic: public Signal_node { public: Arithmetic(){ create_signal_input("signal","Signal"); create_parameter("value","number","Value or signal for operation","Value",1.0f); create_attribute("operator","operator for image","Operator","+",{"+","-","*","/","%","^","sin","cos","ease","jolt"}); title="Arithmetic"; description="Performs arithmetic on a signal with a signal or value"; }; Arithmetic(map &settings):Arithmetic() { base_settings(settings); }; Arithmetic* clone(map &_settings) { return new Arithmetic(_settings);}; const float output(const Time_spec &time) { if (attributes["operator"]->intVal==ARITHMETIC_divide||attributes["operator"]->intVal==ARITHMETIC_modulo){ if (value==0.0f) { Poco::Logger& logger = Poco::Logger::get("Rotor"); logger.error("Arithmetic node: caught division by zero, frame "+time.frame()); return 0.0f; } } if (inputs.size()) { //there should there be a way to specify number of inputs in the code rather than in xml if (inputs[0]->connection) { float in= inputs[0]->get(time); switch (attributes["operator"]->intVal) { case ARITHMETIC_plus: return in+parameters["value"]->value; break; case ARITHMETIC_minus: return in-parameters["value"]->value; break; case ARITHMETIC_multiply: return in*parameters["value"]->value; break; case ARITHMETIC_divide: return in/parameters["value"]->value; break; case ARITHMETIC_modulo: return fmod(in,parameters["value"]->value); break; case ARITHMETIC_pow: return pow(in,parameters["value"]->value); break; case ARITHMETIC_sin: return sin(in)*parameters["value"]->value; break; case ARITHMETIC_cos: return cos(in)*parameters["value"]->value; break; case ARITHMETIC_ease: return ((1.0-parameters["value"]->value)*in)+(parameters["value"]->value*(0.5f+((cos((fmod(in,1.0f)+1.0f)*M_PI))*0.5f))); break; case ARITHMETIC_jolt: return ((1.0-parameters["value"]->value)*in)+(parameters["value"]->value*(0.5f+((sin((fmod(in,1.0f)+1.0f)*M_PI))*0.5f))); break; } } } return 0.0f; } int op; float value; }; class Is_new_integer: public Signal_node { public: Is_new_integer(){ title="New integer"; description="Outputs 1 on the frame that a signal becomes a new integer"; create_signal_input("signal","Signal"); }; Is_new_integer(map &settings):Is_new_integer() { base_settings(settings); }; Is_new_integer* clone(map &_settings) { return new Is_new_integer(_settings);}; const float output(const Time_spec &time) { if (((int)inputs[0]->get(time))>((int)inputs[0]->get(time.lastframe()))) { return 1.0f; } return 0.0f; } }; class On_off: public Signal_node { public: On_off(){ title="On off"; description="Outputs 1 if the integer floor of the signal is even"; create_signal_input("signal","Signal"); }; On_off(map &settings):On_off() { base_settings(settings); }; On_off* clone(map &_settings) { return new On_off(_settings);}; const float output(const Time_spec &time) { if (inputs[0]->connection) { float s1=(((Signal_node*)(inputs[0]->connection))->get_output(time)); if ((int)s1%2) return 1.0f; } return 0.0f; } }; //pseudo random hash function //http://create.stephan-brumme.com/fnv-hash/ const uint32_t Prime = 0x01000193; // 16777619 const uint32_t Seed = 0x811C9DC5; // 2166136261 /// hash a byte inline uint32_t fnv1a(unsigned char oneByte, uint32_t hash = Seed) { return (oneByte ^ hash) * Prime; } /// hash a short (two bytes) inline uint32_t fnv1a(unsigned short twoBytes, uint32_t hash = Seed) { const unsigned char* ptr = (const unsigned char*) &twoBytes; hash = fnv1a(*ptr++, hash); return fnv1a(*ptr , hash); } /// hash a 32 bit integer (four bytes) inline uint32_t fnv1a(uint32_t fourBytes, uint32_t hash = Seed) { const unsigned char* ptr = (const unsigned char*) &fourBytes; hash = fnv1a(*ptr++, hash); hash = fnv1a(*ptr++, hash); hash = fnv1a(*ptr++, hash); return fnv1a(*ptr , hash); } class Random: public Signal_node { public: Random(){ title="Random"; description="Randomises integer part of signal (seedable)"; create_signal_input("signal","Signal"); create_parameter("seed","number","Seed value","Seed",1.0f); }; Random(map &settings) { base_settings(settings); }; Random* clone(map &_settings) { return new Random(_settings);}; const float output(const Time_spec &time) { uint32_t seed=Seed+parameters["seed"]->value; //hash the integer part and add the fractional part back on float o=inputs[0]->get(time); uint32_t m=(int)o; return ((float)(fnv1a(m,seed)%((uint32_t)time.duration)))+(o-m); } }; class Noise: public Signal_node { //fractal noise public: Noise(){ title="Noise"; description="Fractal noise (seedable)"; create_signal_input("signal","Signal"); create_parameter("seed","number","Seed value","Seed",1.0f); }; Noise(map &settings) { base_settings(settings); seed=find_setting(settings,"seed",0); }; Noise* clone(map &_settings) { return new Noise(_settings);}; const float output(const Time_spec &time) { uint32_t seed=Seed+parameters["seed"]->value; //hash the integer part and add the fractional part back on float o=inputs[0]->get(time); uint32_t m=(int)o; return ((float)(fnv1a(m,seed)%((uint32_t)time.duration)))+(o-m); } uint32_t seed; private: }; } #endif