/********************************************************************** fft.cpp This class is a C++ wrapper for original code written by Dominic Mazzoni in September 2000 This file contains a few FFT routines, including a real-FFT routine that is almost twice as fast as a normal complex FFT, and a power spectrum routine which is more convenient when you know you don't care about phase information. It now also contains a few basic windowing functions. Some of this code was based on a free implementation of an FFT by Don Cross, available on the web at: http://www.intersrv.com/~dcross/fft.html The basic algorithm for his code was based on Numerical Recipes in Fortran. I optimized his code further by reducing array accesses, caching the bit reversal table, and eliminating float-to-double conversions, and I added the routines to calculate a real FFT and a real power spectrum. Note: all of these routines use single-precision floats. I have found that in practice, floats work well until you get above 8192 samples. If you need to do a larger FFT, you need to use doubles. **********************************************************************/ #include "fft.h" #include #include #include int **gFFTBitTable = NULL; const int MaxFastBits = 16; int IsPowerOfTwo(int x) { if (x < 2) return false; if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */ return false; return true; } int NumberOfBitsNeeded(int PowerOfTwo) { int i; if (PowerOfTwo < 2) { fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo); exit(1); } for (i = 0;; i++) if (PowerOfTwo & (1 << i)) return i; } int ReverseBits(int index, int NumBits) { int i, rev; for (i = rev = 0; i < NumBits; i++) { rev = (rev << 1) | (index & 1); index >>= 1; } return rev; } void InitFFT() { gFFTBitTable = new int *[MaxFastBits]; int len = 2; for (int b = 1; b <= MaxFastBits; b++) { gFFTBitTable[b - 1] = new int[len]; for (int i = 0; i < len; i++) gFFTBitTable[b - 1][i] = ReverseBits(i, b); len <<= 1; } } inline int FastReverseBits(int i, int NumBits) { if (NumBits <= MaxFastBits) return gFFTBitTable[NumBits - 1][i]; else return ReverseBits(i, NumBits); } /* * Complex Fast Fourier Transform */ void FFT(int NumSamples, bool InverseTransform, float *RealIn, float *ImagIn, float *RealOut, float *ImagOut) { int NumBits; /* Number of bits needed to store indices */ int i, j, k, n; int BlockSize, BlockEnd; double angle_numerator = 2.0 * M_PI; float tr, ti; /* temp real, temp imaginary */ if (!IsPowerOfTwo(NumSamples)) { fprintf(stderr, "%d is not a power of two\n", NumSamples); exit(1); } if (!gFFTBitTable) InitFFT(); if (InverseTransform) angle_numerator = -angle_numerator; NumBits = NumberOfBitsNeeded(NumSamples); /* ** Do simultaneous data copy and bit-reversal ordering into outputs... */ for (i = 0; i < NumSamples; i++) { j = FastReverseBits(i, NumBits); RealOut[j] = RealIn[i]; ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i]; } /* ** Do the FFT itself... */ BlockEnd = 1; for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) { double delta_angle = angle_numerator / (double) BlockSize; float sm2 = sin(-2 * delta_angle); float sm1 = sin(-delta_angle); float cm2 = cos(-2 * delta_angle); float cm1 = cos(-delta_angle); float w = 2 * cm1; float ar0, ar1, ar2, ai0, ai1, ai2; for (i = 0; i < NumSamples; i += BlockSize) { ar2 = cm2; ar1 = cm1; ai2 = sm2; ai1 = sm1; for (j = i, n = 0; n < BlockEnd; j++, n++) { ar0 = w * ar1 - ar2; ar2 = ar1; ar1 = ar0; ai0 = w * ai1 - ai2; ai2 = ai1; ai1 = ai0; k = j + BlockEnd; tr = ar0 * RealOut[k] - ai0 * ImagOut[k]; ti = ar0 * ImagOut[k] + ai0 * RealOut[k]; RealOut[k] = RealOut[j] - tr; ImagOut[k] = ImagOut[j] - ti; RealOut[j] += tr; ImagOut[j] += ti; } } BlockEnd = BlockSize; } /* ** Need to normalize if inverse transform... */ if (InverseTransform) { float denom = (float) NumSamples; for (i = 0; i < NumSamples; i++) { RealOut[i] /= denom; ImagOut[i] /= denom; } } } /* * Real Fast Fourier Transform * * This function was based on the code in Numerical Recipes in C. * In Num. Rec., the inner loop is based on a single 1-based array * of interleaved real and imaginary numbers. Because we have two * separate zero-based arrays, our indices are quite different. * Here is the correspondence between Num. Rec. indices and our indices: * * i1 <-> real[i] * i2 <-> imag[i] * i3 <-> real[n/2-i] * i4 <-> imag[n/2-i] */ void RealFFT(int NumSamples, float *RealIn, float *RealOut, float *ImagOut) { int Half = NumSamples / 2; int i; float theta = M_PI / Half; float *tmpReal = new float[Half]; float *tmpImag = new float[Half]; for (i = 0; i < Half; i++) { tmpReal[i] = RealIn[2 * i]; tmpImag[i] = RealIn[2 * i + 1]; } FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut); float wtemp = float (sin(0.5 * theta)); float wpr = -2.0 * wtemp * wtemp; float wpi = float (sin(theta)); float wr = 1.0 + wpr; float wi = wpi; int i3; float h1r, h1i, h2r, h2i; for (i = 1; i < Half / 2; i++) { i3 = Half - i; h1r = 0.5 * (RealOut[i] + RealOut[i3]); h1i = 0.5 * (ImagOut[i] - ImagOut[i3]); h2r = 0.5 * (ImagOut[i] + ImagOut[i3]); h2i = -0.5 * (RealOut[i] - RealOut[i3]); RealOut[i] = h1r + wr * h2r - wi * h2i; ImagOut[i] = h1i + wr * h2i + wi * h2r; RealOut[i3] = h1r - wr * h2r + wi * h2i; ImagOut[i3] = -h1i + wr * h2i + wi * h2r; wr = (wtemp = wr) * wpr - wi * wpi + wr; wi = wi * wpr + wtemp * wpi + wi; } RealOut[0] = (h1r = RealOut[0]) + ImagOut[0]; ImagOut[0] = h1r - ImagOut[0]; delete[]tmpReal; delete[]tmpImag; } /* * PowerSpectrum * * This function computes the same as RealFFT, above, but * adds the squares of the real and imaginary part of each * coefficient, extracting the power and throwing away the * phase. * * For speed, it does not call RealFFT, but duplicates some * of its code. */ void PowerSpectrum(int NumSamples, float *In, float *Out) { int Half = NumSamples / 2; int i; float theta = M_PI / Half; float *tmpReal = new float[Half]; float *tmpImag = new float[Half]; float *RealOut = new float[Half]; float *ImagOut = new float[Half]; for (i = 0; i < Half; i++) { tmpReal[i] = In[2 * i]; tmpImag[i] = In[2 * i + 1]; } FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut); float wtemp = float (sin(0.5 * theta)); float wpr = -2.0 * wtemp * wtemp; float wpi = float (sin(theta)); float wr = 1.0 + wpr; float wi = wpi; int i3; float h1r, h1i, h2r, h2i, rt, it; //float total=0; for (i = 1; i < Half / 2; i++) { i3 = Half - i; h1r = 0.5 * (RealOut[i] + RealOut[i3]); h1i = 0.5 * (ImagOut[i] - ImagOut[i3]); h2r = 0.5 * (ImagOut[i] + ImagOut[i3]); h2i = -0.5 * (RealOut[i] - RealOut[i3]); rt = h1r + wr * h2r - wi * h2i; //printf("Realout%i = %f",i,rt);total+=fabs(rt); it = h1i + wr * h2i + wi * h2r; // printf(" Imageout%i = %f\n",i,it); Out[i] = rt * rt + it * it; rt = h1r - wr * h2r + wi * h2i; it = -h1i + wr * h2i + wi * h2r; Out[i3] = rt * rt + it * it; wr = (wtemp = wr) * wpr - wi * wpi + wr; wi = wi * wpr + wtemp * wpi + wi; } //printf("total = %f\n",total); rt = (h1r = RealOut[0]) + ImagOut[0]; it = h1r - ImagOut[0]; Out[0] = rt * rt + it * it; rt = RealOut[Half / 2]; it = ImagOut[Half / 2]; Out[Half / 2] = rt * rt + it * it; delete[]tmpReal; delete[]tmpImag; delete[]RealOut; delete[]ImagOut; } /* * Windowing Functions */ int NumWindowFuncs() { return 4; } char *WindowFuncName(int whichFunction) { switch (whichFunction) { default: case 0: return "Rectangular"; case 1: return "Bartlett"; case 2: return "Hamming"; case 3: return "Hanning"; } } void WindowFunc(int whichFunction, int NumSamples, float *in) { int i; if (whichFunction == 1) { // Bartlett (triangular) window for (i = 0; i < NumSamples / 2; i++) { in[i] *= (i / (float) (NumSamples / 2)); in[i + (NumSamples / 2)] *= (1.0 - (i / (float) (NumSamples / 2))); } } if (whichFunction == 2) { // Hamming for (i = 0; i < NumSamples; i++) in[i] *= 0.54 - 0.46 * cos(2 * M_PI * i / (NumSamples - 1)); } if (whichFunction == 3) { // Hanning for (i = 0; i < NumSamples; i++) in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (NumSamples - 1)); } } /* constructor */ fft::fft() { } /* destructor */ fft::~fft() { } /* Calculate the power spectrum */ void fft::powerSpectrum(int start, int half, float *data, int windowSize,float *magnitude,float *phase, float *power, float *avg_power) { int i; int windowFunc = 3; float total_power = 0.0f; /* processing variables*/ float *in_real = new float[windowSize]; float *in_img = new float[windowSize]; float *out_real = new float[windowSize]; float *out_img = new float[windowSize]; for (i = 0; i < windowSize; i++) { in_real[i] = data[start + i]; } WindowFunc(windowFunc, windowSize, in_real); RealFFT(windowSize, in_real, out_real, out_img); for (i = 0; i < half; i++) { /* compute power */ power[i] = out_real[i]*out_real[i] + out_img[i]*out_img[i]; total_power += power[i]; /* compute magnitude and phase */ magnitude[i] = 2.0*sqrt(power[i]); if (magnitude[i] < 0.000001){ // less than 0.1 nV magnitude[i] = 0; // out of range } else { magnitude[i] = 20.0*log10(magnitude[i] + 1); // get to to db scale } phase[i] = atan2(out_img[i],out_real[i]); } /* calculate average power */ *(avg_power) = total_power / (float) half; delete[]in_real; delete[]in_img; delete[]out_real; delete[]out_img; } void fft::inversePowerSpectrum(int start, int half, int windowSize, float *finalOut,float *magnitude,float *phase) { int i; int windowFunc = 3; /* processing variables*/ float *in_real = new float[windowSize]; float *in_img = new float[windowSize]; float *out_real = new float[windowSize]; float *out_img = new float[windowSize]; /* get real and imag part */ for (i = 0; i < half; i++) { in_real[i] = magnitude[i]*cos(phase[i]); in_img[i] = magnitude[i]*sin(phase[i]); } /* zero negative frequencies */ for (i = half; i < windowSize; i++) { in_real[i] = 0.0; in_img[i] = 0.0; } FFT(windowSize, 1, in_real, in_img, out_real, out_img); // second parameter indicates inverse transform WindowFunc(windowFunc, windowSize, out_real); for (i = 0; i < windowSize; i++) { finalOut[start + i] += out_real[i]; } delete[]in_real; delete[]in_img; delete[]out_real; delete[]out_img; }