diff options
| author | Tim <tim@Admins-Mac-Pro-2.local> | 2013-06-19 20:03:17 +0100 |
|---|---|---|
| committer | Tim <tim@Admins-Mac-Pro-2.local> | 2013-06-19 20:03:17 +0100 |
| commit | cdd0e0b630bd3a5a8ba15dbce7f5e03221b72f92 (patch) | |
| tree | 4ada26f9bf3d4e0bdb97889472e95729433518a6 /06_performance/src/fft.cpp | |
| parent | 4fdd082d9a5657b0f9c613d47c2c58cea366a2e6 (diff) | |
working on performance version
Diffstat (limited to '06_performance/src/fft.cpp')
| -rw-r--r-- | 06_performance/src/fft.cpp | 489 |
1 files changed, 489 insertions, 0 deletions
diff --git a/06_performance/src/fft.cpp b/06_performance/src/fft.cpp new file mode 100644 index 0000000..ca3217e --- /dev/null +++ b/06_performance/src/fft.cpp @@ -0,0 +1,489 @@ +/********************************************************************** + + fft.cpp + + + This class is a C++ wrapper for original code + written by Dominic Mazzoni in September 2000 + + This file contains a few FFT routines, including a real-FFT + routine that is almost twice as fast as a normal complex FFT, + and a power spectrum routine which is more convenient when + you know you don't care about phase information. It now also + contains a few basic windowing functions. + + Some of this code was based on a free implementation of an FFT + by Don Cross, available on the web at: + + http://www.intersrv.com/~dcross/fft.html + + The basic algorithm for his code was based on Numerical Recipes + in Fortran. I optimized his code further by reducing array + accesses, caching the bit reversal table, and eliminating + float-to-double conversions, and I added the routines to + calculate a real FFT and a real power spectrum. + + Note: all of these routines use single-precision floats. + I have found that in practice, floats work well until you + get above 8192 samples. If you need to do a larger FFT, + you need to use doubles. + +**********************************************************************/ + +#include "fft.h" +#include <stdlib.h> +#include <stdio.h> +#include <math.h> + +int **gFFTBitTable = NULL; +const int MaxFastBits = 16; + +int IsPowerOfTwo(int x) +{ + if (x < 2) + return false; + + if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */ + return false; + + return true; +} + +int NumberOfBitsNeeded(int PowerOfTwo) +{ + int i; + + if (PowerOfTwo < 2) { + fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo); + exit(1); + } + + for (i = 0;; i++) + if (PowerOfTwo & (1 << i)) + return i; +} + +int ReverseBits(int index, int NumBits) +{ + int i, rev; + + for (i = rev = 0; i < NumBits; i++) { + rev = (rev << 1) | (index & 1); + index >>= 1; + } + + return rev; +} + +void InitFFT() +{ + gFFTBitTable = new int *[MaxFastBits]; + + int len = 2; + for (int b = 1; b <= MaxFastBits; b++) { + + gFFTBitTable[b - 1] = new int[len]; + + for (int i = 0; i < len; i++) + gFFTBitTable[b - 1][i] = ReverseBits(i, b); + + len <<= 1; + } +} + +inline int FastReverseBits(int i, int NumBits) +{ + if (NumBits <= MaxFastBits) + return gFFTBitTable[NumBits - 1][i]; + else + return ReverseBits(i, NumBits); +} + +/* + * Complex Fast Fourier Transform + */ + +void FFT(int NumSamples, + bool InverseTransform, + float *RealIn, float *ImagIn, float *RealOut, float *ImagOut) +{ + int NumBits; /* Number of bits needed to store indices */ + int i, j, k, n; + int BlockSize, BlockEnd; + + double angle_numerator = 2.0 * M_PI; + float tr, ti; /* temp real, temp imaginary */ + + if (!IsPowerOfTwo(NumSamples)) { + fprintf(stderr, "%d is not a power of two\n", NumSamples); + exit(1); + } + + if (!gFFTBitTable) + InitFFT(); + + if (InverseTransform) + angle_numerator = -angle_numerator; + + NumBits = NumberOfBitsNeeded(NumSamples); + + /* + ** Do simultaneous data copy and bit-reversal ordering into outputs... + */ + + for (i = 0; i < NumSamples; i++) { + j = FastReverseBits(i, NumBits); + RealOut[j] = RealIn[i]; + ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i]; + } + + /* + ** Do the FFT itself... + */ + + BlockEnd = 1; + for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) { + + double delta_angle = angle_numerator / (double) BlockSize; + + float sm2 = sin(-2 * delta_angle); + float sm1 = sin(-delta_angle); + float cm2 = cos(-2 * delta_angle); + float cm1 = cos(-delta_angle); + float w = 2 * cm1; + float ar0, ar1, ar2, ai0, ai1, ai2; + + for (i = 0; i < NumSamples; i += BlockSize) { + ar2 = cm2; + ar1 = cm1; + + ai2 = sm2; + ai1 = sm1; + + for (j = i, n = 0; n < BlockEnd; j++, n++) { + ar0 = w * ar1 - ar2; + ar2 = ar1; + ar1 = ar0; + + ai0 = w * ai1 - ai2; + ai2 = ai1; + ai1 = ai0; + + k = j + BlockEnd; + tr = ar0 * RealOut[k] - ai0 * ImagOut[k]; + ti = ar0 * ImagOut[k] + ai0 * RealOut[k]; + + RealOut[k] = RealOut[j] - tr; + ImagOut[k] = ImagOut[j] - ti; + + RealOut[j] += tr; + ImagOut[j] += ti; + } + } + + BlockEnd = BlockSize; + } + + /* + ** Need to normalize if inverse transform... + */ + + if (InverseTransform) { + float denom = (float) NumSamples; + + for (i = 0; i < NumSamples; i++) { + RealOut[i] /= denom; + ImagOut[i] /= denom; + } + } +} + +/* + * Real Fast Fourier Transform + * + * This function was based on the code in Numerical Recipes in C. + * In Num. Rec., the inner loop is based on a single 1-based array + * of interleaved real and imaginary numbers. Because we have two + * separate zero-based arrays, our indices are quite different. + * Here is the correspondence between Num. Rec. indices and our indices: + * + * i1 <-> real[i] + * i2 <-> imag[i] + * i3 <-> real[n/2-i] + * i4 <-> imag[n/2-i] + */ + +void RealFFT(int NumSamples, float *RealIn, float *RealOut, float *ImagOut) +{ + int Half = NumSamples / 2; + int i; + + float theta = M_PI / Half; + + float *tmpReal = new float[Half]; + float *tmpImag = new float[Half]; + + for (i = 0; i < Half; i++) { + tmpReal[i] = RealIn[2 * i]; + tmpImag[i] = RealIn[2 * i + 1]; + } + + FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut); + + float wtemp = float (sin(0.5 * theta)); + + float wpr = -2.0 * wtemp * wtemp; + float wpi = float (sin(theta)); + float wr = 1.0 + wpr; + float wi = wpi; + + int i3; + + float h1r, h1i, h2r, h2i; + + for (i = 1; i < Half / 2; i++) { + + i3 = Half - i; + + h1r = 0.5 * (RealOut[i] + RealOut[i3]); + h1i = 0.5 * (ImagOut[i] - ImagOut[i3]); + h2r = 0.5 * (ImagOut[i] + ImagOut[i3]); + h2i = -0.5 * (RealOut[i] - RealOut[i3]); + + RealOut[i] = h1r + wr * h2r - wi * h2i; + ImagOut[i] = h1i + wr * h2i + wi * h2r; + RealOut[i3] = h1r - wr * h2r + wi * h2i; + ImagOut[i3] = -h1i + wr * h2i + wi * h2r; + + wr = (wtemp = wr) * wpr - wi * wpi + wr; + wi = wi * wpr + wtemp * wpi + wi; + } + + RealOut[0] = (h1r = RealOut[0]) + ImagOut[0]; + ImagOut[0] = h1r - ImagOut[0]; + + delete[]tmpReal; + delete[]tmpImag; +} + +/* + * PowerSpectrum + * + * This function computes the same as RealFFT, above, but + * adds the squares of the real and imaginary part of each + * coefficient, extracting the power and throwing away the + * phase. + * + * For speed, it does not call RealFFT, but duplicates some + * of its code. + */ + +void PowerSpectrum(int NumSamples, float *In, float *Out) +{ + int Half = NumSamples / 2; + int i; + + float theta = M_PI / Half; + + float *tmpReal = new float[Half]; + float *tmpImag = new float[Half]; + float *RealOut = new float[Half]; + float *ImagOut = new float[Half]; + + for (i = 0; i < Half; i++) { + tmpReal[i] = In[2 * i]; + tmpImag[i] = In[2 * i + 1]; + } + + FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut); + + float wtemp = float (sin(0.5 * theta)); + + float wpr = -2.0 * wtemp * wtemp; + float wpi = float (sin(theta)); + float wr = 1.0 + wpr; + float wi = wpi; + + int i3; + + float h1r, h1i, h2r, h2i, rt, it; + //float total=0; + + for (i = 1; i < Half / 2; i++) { + + i3 = Half - i; + + h1r = 0.5 * (RealOut[i] + RealOut[i3]); + h1i = 0.5 * (ImagOut[i] - ImagOut[i3]); + h2r = 0.5 * (ImagOut[i] + ImagOut[i3]); + h2i = -0.5 * (RealOut[i] - RealOut[i3]); + + rt = h1r + wr * h2r - wi * h2i; //printf("Realout%i = %f",i,rt);total+=fabs(rt); + it = h1i + wr * h2i + wi * h2r; // printf(" Imageout%i = %f\n",i,it); + + Out[i] = rt * rt + it * it; + + rt = h1r - wr * h2r + wi * h2i; + it = -h1i + wr * h2i + wi * h2r; + + Out[i3] = rt * rt + it * it; + + wr = (wtemp = wr) * wpr - wi * wpi + wr; + wi = wi * wpr + wtemp * wpi + wi; + } + //printf("total = %f\n",total); + rt = (h1r = RealOut[0]) + ImagOut[0]; + it = h1r - ImagOut[0]; + Out[0] = rt * rt + it * it; + + rt = RealOut[Half / 2]; + it = ImagOut[Half / 2]; + Out[Half / 2] = rt * rt + it * it; + + delete[]tmpReal; + delete[]tmpImag; + delete[]RealOut; + delete[]ImagOut; +} + +/* + * Windowing Functions + */ + +int NumWindowFuncs() +{ + return 4; +} + +char *WindowFuncName(int whichFunction) +{ + switch (whichFunction) { + default: + case 0: + return "Rectangular"; + case 1: + return "Bartlett"; + case 2: + return "Hamming"; + case 3: + return "Hanning"; + } +} + +void WindowFunc(int whichFunction, int NumSamples, float *in) +{ + int i; + + if (whichFunction == 1) { + // Bartlett (triangular) window + for (i = 0; i < NumSamples / 2; i++) { + in[i] *= (i / (float) (NumSamples / 2)); + in[i + (NumSamples / 2)] *= + (1.0 - (i / (float) (NumSamples / 2))); + } + } + + if (whichFunction == 2) { + // Hamming + for (i = 0; i < NumSamples; i++) + in[i] *= 0.54 - 0.46 * cos(2 * M_PI * i / (NumSamples - 1)); + } + + if (whichFunction == 3) { + // Hanning + for (i = 0; i < NumSamples; i++) + in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (NumSamples - 1)); + } +} + +/* constructor */ +fft::fft() { +} + +/* destructor */ +fft::~fft() { + + +} + +/* Calculate the power spectrum */ +void fft::powerSpectrum(int start, int half, float *data, int windowSize,float *magnitude,float *phase, float *power, float *avg_power) { + int i; + int windowFunc = 3; + float total_power = 0.0f; + + /* processing variables*/ + float *in_real = new float[windowSize]; + float *in_img = new float[windowSize]; + float *out_real = new float[windowSize]; + float *out_img = new float[windowSize]; + + for (i = 0; i < windowSize; i++) { + in_real[i] = data[start + i]; + } + + WindowFunc(windowFunc, windowSize, in_real); + RealFFT(windowSize, in_real, out_real, out_img); + + for (i = 0; i < half; i++) { + /* compute power */ + power[i] = out_real[i]*out_real[i] + out_img[i]*out_img[i]; + total_power += power[i]; + /* compute magnitude and phase */ + magnitude[i] = 2.0*sqrt(power[i]); + + if (magnitude[i] < 0.000001){ // less than 0.1 nV + magnitude[i] = 0; // out of range + } else { + magnitude[i] = 20.0*log10(magnitude[i] + 1); // get to to db scale + } + + + phase[i] = atan2(out_img[i],out_real[i]); + } + /* calculate average power */ + *(avg_power) = total_power / (float) half; + + delete[]in_real; + delete[]in_img; + delete[]out_real; + delete[]out_img; +} + + +void fft::inversePowerSpectrum(int start, int half, int windowSize, float *finalOut,float *magnitude,float *phase) { + int i; + int windowFunc = 3; + + /* processing variables*/ + float *in_real = new float[windowSize]; + float *in_img = new float[windowSize]; + float *out_real = new float[windowSize]; + float *out_img = new float[windowSize]; + + /* get real and imag part */ + for (i = 0; i < half; i++) { + in_real[i] = magnitude[i]*cos(phase[i]); + in_img[i] = magnitude[i]*sin(phase[i]); + } + + /* zero negative frequencies */ + for (i = half; i < windowSize; i++) { + in_real[i] = 0.0; + in_img[i] = 0.0; + } + + FFT(windowSize, 1, in_real, in_img, out_real, out_img); // second parameter indicates inverse transform + WindowFunc(windowFunc, windowSize, out_real); + + for (i = 0; i < windowSize; i++) { + finalOut[start + i] += out_real[i]; + } + + delete[]in_real; + delete[]in_img; + delete[]out_real; + delete[]out_img; +} + + |
