summaryrefslogtreecommitdiff
path: root/07_performance/src/fft.cpp
diff options
context:
space:
mode:
authorTim Redfern <tim@eclectronics.org>2013-12-12 22:05:38 +0000
committerTim Redfern <tim@eclectronics.org>2013-12-12 22:05:38 +0000
commitfbbc891991aaef716b7e56870faa25a11b169ef1 (patch)
tree1cc49cca41a2a6f4b769d48eb3189d24410f9f04 /07_performance/src/fft.cpp
working setup for documentation: glitch gisabledHEADmaster
Diffstat (limited to '07_performance/src/fft.cpp')
-rw-r--r--07_performance/src/fft.cpp489
1 files changed, 489 insertions, 0 deletions
diff --git a/07_performance/src/fft.cpp b/07_performance/src/fft.cpp
new file mode 100644
index 0000000..ca3217e
--- /dev/null
+++ b/07_performance/src/fft.cpp
@@ -0,0 +1,489 @@
+/**********************************************************************
+
+ fft.cpp
+
+
+ This class is a C++ wrapper for original code
+ written by Dominic Mazzoni in September 2000
+
+ This file contains a few FFT routines, including a real-FFT
+ routine that is almost twice as fast as a normal complex FFT,
+ and a power spectrum routine which is more convenient when
+ you know you don't care about phase information. It now also
+ contains a few basic windowing functions.
+
+ Some of this code was based on a free implementation of an FFT
+ by Don Cross, available on the web at:
+
+ http://www.intersrv.com/~dcross/fft.html
+
+ The basic algorithm for his code was based on Numerical Recipes
+ in Fortran. I optimized his code further by reducing array
+ accesses, caching the bit reversal table, and eliminating
+ float-to-double conversions, and I added the routines to
+ calculate a real FFT and a real power spectrum.
+
+ Note: all of these routines use single-precision floats.
+ I have found that in practice, floats work well until you
+ get above 8192 samples. If you need to do a larger FFT,
+ you need to use doubles.
+
+**********************************************************************/
+
+#include "fft.h"
+#include <stdlib.h>
+#include <stdio.h>
+#include <math.h>
+
+int **gFFTBitTable = NULL;
+const int MaxFastBits = 16;
+
+int IsPowerOfTwo(int x)
+{
+ if (x < 2)
+ return false;
+
+ if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */
+ return false;
+
+ return true;
+}
+
+int NumberOfBitsNeeded(int PowerOfTwo)
+{
+ int i;
+
+ if (PowerOfTwo < 2) {
+ fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo);
+ exit(1);
+ }
+
+ for (i = 0;; i++)
+ if (PowerOfTwo & (1 << i))
+ return i;
+}
+
+int ReverseBits(int index, int NumBits)
+{
+ int i, rev;
+
+ for (i = rev = 0; i < NumBits; i++) {
+ rev = (rev << 1) | (index & 1);
+ index >>= 1;
+ }
+
+ return rev;
+}
+
+void InitFFT()
+{
+ gFFTBitTable = new int *[MaxFastBits];
+
+ int len = 2;
+ for (int b = 1; b <= MaxFastBits; b++) {
+
+ gFFTBitTable[b - 1] = new int[len];
+
+ for (int i = 0; i < len; i++)
+ gFFTBitTable[b - 1][i] = ReverseBits(i, b);
+
+ len <<= 1;
+ }
+}
+
+inline int FastReverseBits(int i, int NumBits)
+{
+ if (NumBits <= MaxFastBits)
+ return gFFTBitTable[NumBits - 1][i];
+ else
+ return ReverseBits(i, NumBits);
+}
+
+/*
+ * Complex Fast Fourier Transform
+ */
+
+void FFT(int NumSamples,
+ bool InverseTransform,
+ float *RealIn, float *ImagIn, float *RealOut, float *ImagOut)
+{
+ int NumBits; /* Number of bits needed to store indices */
+ int i, j, k, n;
+ int BlockSize, BlockEnd;
+
+ double angle_numerator = 2.0 * M_PI;
+ float tr, ti; /* temp real, temp imaginary */
+
+ if (!IsPowerOfTwo(NumSamples)) {
+ fprintf(stderr, "%d is not a power of two\n", NumSamples);
+ exit(1);
+ }
+
+ if (!gFFTBitTable)
+ InitFFT();
+
+ if (InverseTransform)
+ angle_numerator = -angle_numerator;
+
+ NumBits = NumberOfBitsNeeded(NumSamples);
+
+ /*
+ ** Do simultaneous data copy and bit-reversal ordering into outputs...
+ */
+
+ for (i = 0; i < NumSamples; i++) {
+ j = FastReverseBits(i, NumBits);
+ RealOut[j] = RealIn[i];
+ ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
+ }
+
+ /*
+ ** Do the FFT itself...
+ */
+
+ BlockEnd = 1;
+ for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {
+
+ double delta_angle = angle_numerator / (double) BlockSize;
+
+ float sm2 = sin(-2 * delta_angle);
+ float sm1 = sin(-delta_angle);
+ float cm2 = cos(-2 * delta_angle);
+ float cm1 = cos(-delta_angle);
+ float w = 2 * cm1;
+ float ar0, ar1, ar2, ai0, ai1, ai2;
+
+ for (i = 0; i < NumSamples; i += BlockSize) {
+ ar2 = cm2;
+ ar1 = cm1;
+
+ ai2 = sm2;
+ ai1 = sm1;
+
+ for (j = i, n = 0; n < BlockEnd; j++, n++) {
+ ar0 = w * ar1 - ar2;
+ ar2 = ar1;
+ ar1 = ar0;
+
+ ai0 = w * ai1 - ai2;
+ ai2 = ai1;
+ ai1 = ai0;
+
+ k = j + BlockEnd;
+ tr = ar0 * RealOut[k] - ai0 * ImagOut[k];
+ ti = ar0 * ImagOut[k] + ai0 * RealOut[k];
+
+ RealOut[k] = RealOut[j] - tr;
+ ImagOut[k] = ImagOut[j] - ti;
+
+ RealOut[j] += tr;
+ ImagOut[j] += ti;
+ }
+ }
+
+ BlockEnd = BlockSize;
+ }
+
+ /*
+ ** Need to normalize if inverse transform...
+ */
+
+ if (InverseTransform) {
+ float denom = (float) NumSamples;
+
+ for (i = 0; i < NumSamples; i++) {
+ RealOut[i] /= denom;
+ ImagOut[i] /= denom;
+ }
+ }
+}
+
+/*
+ * Real Fast Fourier Transform
+ *
+ * This function was based on the code in Numerical Recipes in C.
+ * In Num. Rec., the inner loop is based on a single 1-based array
+ * of interleaved real and imaginary numbers. Because we have two
+ * separate zero-based arrays, our indices are quite different.
+ * Here is the correspondence between Num. Rec. indices and our indices:
+ *
+ * i1 <-> real[i]
+ * i2 <-> imag[i]
+ * i3 <-> real[n/2-i]
+ * i4 <-> imag[n/2-i]
+ */
+
+void RealFFT(int NumSamples, float *RealIn, float *RealOut, float *ImagOut)
+{
+ int Half = NumSamples / 2;
+ int i;
+
+ float theta = M_PI / Half;
+
+ float *tmpReal = new float[Half];
+ float *tmpImag = new float[Half];
+
+ for (i = 0; i < Half; i++) {
+ tmpReal[i] = RealIn[2 * i];
+ tmpImag[i] = RealIn[2 * i + 1];
+ }
+
+ FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);
+
+ float wtemp = float (sin(0.5 * theta));
+
+ float wpr = -2.0 * wtemp * wtemp;
+ float wpi = float (sin(theta));
+ float wr = 1.0 + wpr;
+ float wi = wpi;
+
+ int i3;
+
+ float h1r, h1i, h2r, h2i;
+
+ for (i = 1; i < Half / 2; i++) {
+
+ i3 = Half - i;
+
+ h1r = 0.5 * (RealOut[i] + RealOut[i3]);
+ h1i = 0.5 * (ImagOut[i] - ImagOut[i3]);
+ h2r = 0.5 * (ImagOut[i] + ImagOut[i3]);
+ h2i = -0.5 * (RealOut[i] - RealOut[i3]);
+
+ RealOut[i] = h1r + wr * h2r - wi * h2i;
+ ImagOut[i] = h1i + wr * h2i + wi * h2r;
+ RealOut[i3] = h1r - wr * h2r + wi * h2i;
+ ImagOut[i3] = -h1i + wr * h2i + wi * h2r;
+
+ wr = (wtemp = wr) * wpr - wi * wpi + wr;
+ wi = wi * wpr + wtemp * wpi + wi;
+ }
+
+ RealOut[0] = (h1r = RealOut[0]) + ImagOut[0];
+ ImagOut[0] = h1r - ImagOut[0];
+
+ delete[]tmpReal;
+ delete[]tmpImag;
+}
+
+/*
+ * PowerSpectrum
+ *
+ * This function computes the same as RealFFT, above, but
+ * adds the squares of the real and imaginary part of each
+ * coefficient, extracting the power and throwing away the
+ * phase.
+ *
+ * For speed, it does not call RealFFT, but duplicates some
+ * of its code.
+ */
+
+void PowerSpectrum(int NumSamples, float *In, float *Out)
+{
+ int Half = NumSamples / 2;
+ int i;
+
+ float theta = M_PI / Half;
+
+ float *tmpReal = new float[Half];
+ float *tmpImag = new float[Half];
+ float *RealOut = new float[Half];
+ float *ImagOut = new float[Half];
+
+ for (i = 0; i < Half; i++) {
+ tmpReal[i] = In[2 * i];
+ tmpImag[i] = In[2 * i + 1];
+ }
+
+ FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);
+
+ float wtemp = float (sin(0.5 * theta));
+
+ float wpr = -2.0 * wtemp * wtemp;
+ float wpi = float (sin(theta));
+ float wr = 1.0 + wpr;
+ float wi = wpi;
+
+ int i3;
+
+ float h1r, h1i, h2r, h2i, rt, it;
+ //float total=0;
+
+ for (i = 1; i < Half / 2; i++) {
+
+ i3 = Half - i;
+
+ h1r = 0.5 * (RealOut[i] + RealOut[i3]);
+ h1i = 0.5 * (ImagOut[i] - ImagOut[i3]);
+ h2r = 0.5 * (ImagOut[i] + ImagOut[i3]);
+ h2i = -0.5 * (RealOut[i] - RealOut[i3]);
+
+ rt = h1r + wr * h2r - wi * h2i; //printf("Realout%i = %f",i,rt);total+=fabs(rt);
+ it = h1i + wr * h2i + wi * h2r; // printf(" Imageout%i = %f\n",i,it);
+
+ Out[i] = rt * rt + it * it;
+
+ rt = h1r - wr * h2r + wi * h2i;
+ it = -h1i + wr * h2i + wi * h2r;
+
+ Out[i3] = rt * rt + it * it;
+
+ wr = (wtemp = wr) * wpr - wi * wpi + wr;
+ wi = wi * wpr + wtemp * wpi + wi;
+ }
+ //printf("total = %f\n",total);
+ rt = (h1r = RealOut[0]) + ImagOut[0];
+ it = h1r - ImagOut[0];
+ Out[0] = rt * rt + it * it;
+
+ rt = RealOut[Half / 2];
+ it = ImagOut[Half / 2];
+ Out[Half / 2] = rt * rt + it * it;
+
+ delete[]tmpReal;
+ delete[]tmpImag;
+ delete[]RealOut;
+ delete[]ImagOut;
+}
+
+/*
+ * Windowing Functions
+ */
+
+int NumWindowFuncs()
+{
+ return 4;
+}
+
+char *WindowFuncName(int whichFunction)
+{
+ switch (whichFunction) {
+ default:
+ case 0:
+ return "Rectangular";
+ case 1:
+ return "Bartlett";
+ case 2:
+ return "Hamming";
+ case 3:
+ return "Hanning";
+ }
+}
+
+void WindowFunc(int whichFunction, int NumSamples, float *in)
+{
+ int i;
+
+ if (whichFunction == 1) {
+ // Bartlett (triangular) window
+ for (i = 0; i < NumSamples / 2; i++) {
+ in[i] *= (i / (float) (NumSamples / 2));
+ in[i + (NumSamples / 2)] *=
+ (1.0 - (i / (float) (NumSamples / 2)));
+ }
+ }
+
+ if (whichFunction == 2) {
+ // Hamming
+ for (i = 0; i < NumSamples; i++)
+ in[i] *= 0.54 - 0.46 * cos(2 * M_PI * i / (NumSamples - 1));
+ }
+
+ if (whichFunction == 3) {
+ // Hanning
+ for (i = 0; i < NumSamples; i++)
+ in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (NumSamples - 1));
+ }
+}
+
+/* constructor */
+fft::fft() {
+}
+
+/* destructor */
+fft::~fft() {
+
+
+}
+
+/* Calculate the power spectrum */
+void fft::powerSpectrum(int start, int half, float *data, int windowSize,float *magnitude,float *phase, float *power, float *avg_power) {
+ int i;
+ int windowFunc = 3;
+ float total_power = 0.0f;
+
+ /* processing variables*/
+ float *in_real = new float[windowSize];
+ float *in_img = new float[windowSize];
+ float *out_real = new float[windowSize];
+ float *out_img = new float[windowSize];
+
+ for (i = 0; i < windowSize; i++) {
+ in_real[i] = data[start + i];
+ }
+
+ WindowFunc(windowFunc, windowSize, in_real);
+ RealFFT(windowSize, in_real, out_real, out_img);
+
+ for (i = 0; i < half; i++) {
+ /* compute power */
+ power[i] = out_real[i]*out_real[i] + out_img[i]*out_img[i];
+ total_power += power[i];
+ /* compute magnitude and phase */
+ magnitude[i] = 2.0*sqrt(power[i]);
+
+ if (magnitude[i] < 0.000001){ // less than 0.1 nV
+ magnitude[i] = 0; // out of range
+ } else {
+ magnitude[i] = 20.0*log10(magnitude[i] + 1); // get to to db scale
+ }
+
+
+ phase[i] = atan2(out_img[i],out_real[i]);
+ }
+ /* calculate average power */
+ *(avg_power) = total_power / (float) half;
+
+ delete[]in_real;
+ delete[]in_img;
+ delete[]out_real;
+ delete[]out_img;
+}
+
+
+void fft::inversePowerSpectrum(int start, int half, int windowSize, float *finalOut,float *magnitude,float *phase) {
+ int i;
+ int windowFunc = 3;
+
+ /* processing variables*/
+ float *in_real = new float[windowSize];
+ float *in_img = new float[windowSize];
+ float *out_real = new float[windowSize];
+ float *out_img = new float[windowSize];
+
+ /* get real and imag part */
+ for (i = 0; i < half; i++) {
+ in_real[i] = magnitude[i]*cos(phase[i]);
+ in_img[i] = magnitude[i]*sin(phase[i]);
+ }
+
+ /* zero negative frequencies */
+ for (i = half; i < windowSize; i++) {
+ in_real[i] = 0.0;
+ in_img[i] = 0.0;
+ }
+
+ FFT(windowSize, 1, in_real, in_img, out_real, out_img); // second parameter indicates inverse transform
+ WindowFunc(windowFunc, windowSize, out_real);
+
+ for (i = 0; i < windowSize; i++) {
+ finalOut[start + i] += out_real[i];
+ }
+
+ delete[]in_real;
+ delete[]in_img;
+ delete[]out_real;
+ delete[]out_img;
+}
+
+