1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
//
// ofxHelios.cpp
//
//
// Created by Tim Redfern Nov 2017
//
//
#include "ofxHelios.h"
/*
draw a colourpolyline
put in mid points
draw a vector of lines
put in dwell points
*/
int ofxHelios::draw(vector <ofPolyline> &lines,ofColor colour,int intensity){
return 0;
}
int ofxHelios::draw(ofPolyline &line,ofColor colour,int intensity){
colourPolyline col=colourPolyline(line,colour);
return draw(col,intensity);
}
int ofxHelios::draw(colourPolyline &line, int intensity){
vector <colourPolyline> lines;
lines.push_back(line);
return draw(lines,intensity);
}
int ofxHelios::draw(vector <colourPolyline> &lines, int intensity){
//todo: move to a thread
//todo: add a transform
//POC
int xoffs=0x800-(ofGetWidth()/2);
int yoffs=0x800-(ofGetHeight()/2);
if (device!=OFXHELIOS_NODEVICE){
while (!dac.GetStatus(device)); //timeout for this?
//assemble data
vector <HeliosPoint> points;
ofPoint prev_point=lines[0][0];
ofColor prev_colour=lines[0].getColourAt(0);
for (auto& line:lines){
float dist=prev_point.distance(line[0]);
if (dist>SUBDIVIDE){
//printf("ofxHelios: creating %i join points\n",(int)joindist/SUBDIVIDE);
//dac.SetShutter(device,false); //doesn't do anything
}
for (float j=0;j<dist;j+=SUBDIVIDE){
float amt=j/dist;
points.push_back(HeliosPoint(
(uint16_t)((prev_point.x*(1.0-amt))+(line[0].x*amt)+xoffs),
(uint16_t)((prev_point.y*(1.0-amt))+(line[0].y*amt)+xoffs),
0,0,0,255)); //blank point
}
//dac.SetShutter(device,true); //doesn't do anything
for (int k=0;k<BLANK_NUM;k++){
points.push_back(HeliosPoint(
(uint16_t)(line[0].x+xoffs),
(uint16_t)(line[0].y+yoffs),
0,0,0,0)); //blank point
}
int i;
for (i=0;i<line.size()-1;i++){
float dist=prev_point.distance(line[i]);
for (float j=0;j<dist;j+=SUBDIVIDE){
float amt=j/dist;
points.push_back(HeliosPoint(
(uint16_t)((prev_point.x*(1.0-amt))+(line[i].x*amt)+xoffs),
(uint16_t)((prev_point.y*(1.0-amt))+(line[i].y*amt)+xoffs),
(uint8_t)((((prev_colour.r*(1.0-amt))+(line.getColourAt(i).r*amt))*laserintensity)/255.0),
(uint8_t)((((prev_colour.g*(1.0-amt))+(line.getColourAt(i).g*amt))*laserintensity)/255.0),
(uint8_t)((((prev_colour.b*(1.0-amt))+(line.getColourAt(i).b*amt))*laserintensity)/255.0),
(uint8_t)intensity)
);
}
points.push_back(HeliosPoint(
(uint16_t)(line[i].x+xoffs),
(uint16_t)(line[i].y+yoffs),
(uint8_t)(((line.getColourAt(i).r)*laserintensity)>>8),
(uint8_t)(((line.getColourAt(i).g)*laserintensity)>>8),
(uint8_t)(((line.getColourAt(i).b)*laserintensity)>>8),
(uint8_t)intensity
));
float angle=line.getDegreesAtIndex(i);
if (angle>MAX_ANGLE){
for (int l=0;l<((angle/180)*BLANK_NUM);l++){
points.push_back(HeliosPoint(
(uint16_t)(line[i].x+xoffs),
(uint16_t)(line[i].y+yoffs),
0,0,0,0)); //blank point
}
}
prev_point=line[i];
prev_colour=line.getColourAt(i);
}
//dac.SetShutter(device,false); //doesn't do anything
for (int k=0;k<BLANK_NUM;k++){
points.push_back(HeliosPoint(
(uint16_t)(prev_point.x+xoffs),
(uint16_t)(prev_point.y+yoffs),
0,0,0,0)); //blank point
}
}
if (HELIOS_ERROR==dac.WriteFrame(device, pps, HELIOS_FLAGS_DEFAULT, &points[0], points.size())){
printf("ofxHelios: write error (%i,%i,%i,%i)\n",device, pps, HELIOS_FLAGS_DEFAULT, (int)points.size());
return -1;
}
return points.size();
}
return -2;
}
void ofxHelios::threadedFunction(){
while(isThreadRunning()) {
}
}
|