diff options
| author | Tim Redfern <tim@eclectronics.org> | 2013-09-05 17:57:22 +0100 |
|---|---|---|
| committer | Tim Redfern <tim@eclectronics.org> | 2013-09-05 17:57:22 +0100 |
| commit | 8992cb1d0d07edc33d274f6d7924ecdf6f83d994 (patch) | |
| tree | 3a2c86846b7eec8137c1507e623fc7018f13d453 /ffmpeg/doc/eval.texi | |
| parent | 741fb4b9e135cfb161a749db88713229038577bb (diff) | |
making act segmenter
Diffstat (limited to 'ffmpeg/doc/eval.texi')
| -rw-r--r-- | ffmpeg/doc/eval.texi | 299 |
1 files changed, 299 insertions, 0 deletions
diff --git a/ffmpeg/doc/eval.texi b/ffmpeg/doc/eval.texi new file mode 100644 index 0000000..e1a5c0a --- /dev/null +++ b/ffmpeg/doc/eval.texi @@ -0,0 +1,299 @@ +@chapter Expression Evaluation +@c man begin EXPRESSION EVALUATION + +When evaluating an arithmetic expression, FFmpeg uses an internal +formula evaluator, implemented through the @file{libavutil/eval.h} +interface. + +An expression may contain unary, binary operators, constants, and +functions. + +Two expressions @var{expr1} and @var{expr2} can be combined to form +another expression "@var{expr1};@var{expr2}". +@var{expr1} and @var{expr2} are evaluated in turn, and the new +expression evaluates to the value of @var{expr2}. + +The following binary operators are available: @code{+}, @code{-}, +@code{*}, @code{/}, @code{^}. + +The following unary operators are available: @code{+}, @code{-}. + +The following functions are available: +@table @option +@item abs(x) +Compute absolute value of @var{x}. + +@item acos(x) +Compute arccosine of @var{x}. + +@item asin(x) +Compute arcsine of @var{x}. + +@item atan(x) +Compute arctangent of @var{x}. + +@item bitand(x, y) +@item bitor(x, y) +Compute bitwise and/or operation on @var{x} and @var{y}. + +The results of the evaluation of @var{x} and @var{y} are converted to +integers before executing the bitwise operation. + +Note that both the conversion to integer and the conversion back to +floating point can lose precision. Beware of unexpected results for +large numbers (usually 2^53 and larger). + +@item ceil(expr) +Round the value of expression @var{expr} upwards to the nearest +integer. For example, "ceil(1.5)" is "2.0". + +@item cos(x) +Compute cosine of @var{x}. + +@item cosh(x) +Compute hyperbolic cosine of @var{x}. + +@item eq(x, y) +Return 1 if @var{x} and @var{y} are equivalent, 0 otherwise. + +@item exp(x) +Compute exponential of @var{x} (with base @code{e}, the Euler's number). + +@item floor(expr) +Round the value of expression @var{expr} downwards to the nearest +integer. For example, "floor(-1.5)" is "-2.0". + +@item gauss(x) +Compute Gauss function of @var{x}, corresponding to +@code{exp(-x*x/2) / sqrt(2*PI)}. + +@item gcd(x, y) +Return the greatest common divisor of @var{x} and @var{y}. If both @var{x} and +@var{y} are 0 or either or both are less than zero then behavior is undefined. + +@item gt(x, y) +Return 1 if @var{x} is greater than @var{y}, 0 otherwise. + +@item gte(x, y) +Return 1 if @var{x} is greater than or equal to @var{y}, 0 otherwise. + +@item hypot(x, y) +This function is similar to the C function with the same name; it returns +"sqrt(@var{x}*@var{x} + @var{y}*@var{y})", the length of the hypotenuse of a +right triangle with sides of length @var{x} and @var{y}, or the distance of the +point (@var{x}, @var{y}) from the origin. + +@item if(x, y) +Evaluate @var{x}, and if the result is non-zero return the result of +the evaluation of @var{y}, return 0 otherwise. + +@item if(x, y, z) +Evaluate @var{x}, and if the result is non-zero return the evaluation +result of @var{y}, otherwise the evaluation result of @var{z}. + +@item ifnot(x, y) +Evaluate @var{x}, and if the result is zero return the result of the +evaluation of @var{y}, return 0 otherwise. + +@item ifnot(x, y, z) +Evaluate @var{x}, and if the result is zero return the evaluation +result of @var{y}, otherwise the evaluation result of @var{z}. + +@item isinf(x) +Return 1.0 if @var{x} is +/-INFINITY, 0.0 otherwise. + +@item isnan(x) +Return 1.0 if @var{x} is NAN, 0.0 otherwise. + +@item ld(var) +Allow to load the value of the internal variable with number +@var{var}, which was previously stored with st(@var{var}, @var{expr}). +The function returns the loaded value. + +@item log(x) +Compute natural logarithm of @var{x}. + +@item lt(x, y) +Return 1 if @var{x} is lesser than @var{y}, 0 otherwise. + +@item lte(x, y) +Return 1 if @var{x} is lesser than or equal to @var{y}, 0 otherwise. + +@item max(x, y) +Return the maximum between @var{x} and @var{y}. + +@item min(x, y) +Return the maximum between @var{x} and @var{y}. + +@item mod(x, y) +Compute the remainder of division of @var{x} by @var{y}. + +@item not(expr) +Return 1.0 if @var{expr} is zero, 0.0 otherwise. + +@item pow(x, y) +Compute the power of @var{x} elevated @var{y}, it is equivalent to +"(@var{x})^(@var{y})". + +@item print(t) +@item print(t, l) +Print the value of expression @var{t} with loglevel @var{l}. If +@var{l} is not specified then a default log level is used. +Returns the value of the expression printed. + +Prints t with loglevel l + +@item random(x) +Return a pseudo random value between 0.0 and 1.0. @var{x} is the index of the +internal variable which will be used to save the seed/state. + +@item root(expr, max) +Find an input value for which the function represented by @var{expr} +with argument @var{ld(0)} is 0 in the interval 0..@var{max}. + +The expression in @var{expr} must denote a continuous function or the +result is undefined. + +@var{ld(0)} is used to represent the function input value, which means +that the given expression will be evaluated multiple times with +various input values that the expression can access through +@code{ld(0)}. When the expression evaluates to 0 then the +corresponding input value will be returned. + +@item sin(x) +Compute sine of @var{x}. + +@item sinh(x) +Compute hyperbolic sine of @var{x}. + +@item sqrt(expr) +Compute the square root of @var{expr}. This is equivalent to +"(@var{expr})^.5". + +@item squish(x) +Compute expression @code{1/(1 + exp(4*x))}. + +@item st(var, expr) +Allow to store the value of the expression @var{expr} in an internal +variable. @var{var} specifies the number of the variable where to +store the value, and it is a value ranging from 0 to 9. The function +returns the value stored in the internal variable. +Note, Variables are currently not shared between expressions. + +@item tan(x) +Compute tangent of @var{x}. + +@item tanh(x) +Compute hyperbolic tangent of @var{x}. + +@item taylor(expr, x) +@item taylor(expr, x, id) +Evaluate a Taylor series at @var{x}, given an expression representing +the @code{ld(id)}-th derivative of a function at 0. + +When the series does not converge the result is undefined. + +@var{ld(id)} is used to represent the derivative order in @var{expr}, +which means that the given expression will be evaluated multiple times +with various input values that the expression can access through +@code{ld(id)}. If @var{id} is not specified then 0 is assumed. + +Note, when you have the derivatives at y instead of 0, +@code{taylor(expr, x-y)} can be used. + +@item time(0) +Return the current (wallclock) time in seconds. + +@item trunc(expr) +Round the value of expression @var{expr} towards zero to the nearest +integer. For example, "trunc(-1.5)" is "-1.0". + +@item while(cond, expr) +Evaluate expression @var{expr} while the expression @var{cond} is +non-zero, and returns the value of the last @var{expr} evaluation, or +NAN if @var{cond} was always false. +@end table + +The following constants are available: +@table @option +@item PI +area of the unit disc, approximately 3.14 +@item E +exp(1) (Euler's number), approximately 2.718 +@item PHI +golden ratio (1+sqrt(5))/2, approximately 1.618 +@end table + +Assuming that an expression is considered "true" if it has a non-zero +value, note that: + +@code{*} works like AND + +@code{+} works like OR + +For example the construct: +@example +if (A AND B) then C +@end example +is equivalent to: +@example +if(A*B, C) +@end example + +In your C code, you can extend the list of unary and binary functions, +and define recognized constants, so that they are available for your +expressions. + +The evaluator also recognizes the International System unit prefixes. +If 'i' is appended after the prefix, binary prefixes are used, which +are based on powers of 1024 instead of powers of 1000. +The 'B' postfix multiplies the value by 8, and can be appended after a +unit prefix or used alone. This allows using for example 'KB', 'MiB', +'G' and 'B' as number postfix. + +The list of available International System prefixes follows, with +indication of the corresponding powers of 10 and of 2. +@table @option +@item y +10^-24 / 2^-80 +@item z +10^-21 / 2^-70 +@item a +10^-18 / 2^-60 +@item f +10^-15 / 2^-50 +@item p +10^-12 / 2^-40 +@item n +10^-9 / 2^-30 +@item u +10^-6 / 2^-20 +@item m +10^-3 / 2^-10 +@item c +10^-2 +@item d +10^-1 +@item h +10^2 +@item k +10^3 / 2^10 +@item K +10^3 / 2^10 +@item M +10^6 / 2^20 +@item G +10^9 / 2^30 +@item T +10^12 / 2^40 +@item P +10^15 / 2^40 +@item E +10^18 / 2^50 +@item Z +10^21 / 2^60 +@item Y +10^24 / 2^70 +@end table + +@c man end |
