diff options
| author | Tim Redfern <tim@eclectronics.org> | 2013-09-05 17:57:22 +0100 |
|---|---|---|
| committer | Tim Redfern <tim@eclectronics.org> | 2013-09-05 17:57:22 +0100 |
| commit | 8992cb1d0d07edc33d274f6d7924ecdf6f83d994 (patch) | |
| tree | 3a2c86846b7eec8137c1507e623fc7018f13d453 /ffmpeg/libavcodec/aacdec.c | |
| parent | 741fb4b9e135cfb161a749db88713229038577bb (diff) | |
making act segmenter
Diffstat (limited to 'ffmpeg/libavcodec/aacdec.c')
| -rw-r--r-- | ffmpeg/libavcodec/aacdec.c | 3060 |
1 files changed, 3060 insertions, 0 deletions
diff --git a/ffmpeg/libavcodec/aacdec.c b/ffmpeg/libavcodec/aacdec.c new file mode 100644 index 0000000..37c7de5 --- /dev/null +++ b/ffmpeg/libavcodec/aacdec.c @@ -0,0 +1,3060 @@ +/* + * AAC decoder + * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org ) + * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com ) + * + * AAC LATM decoder + * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz> + * Copyright (c) 2010 Janne Grunau <janne-libav@jannau.net> + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file + * AAC decoder + * @author Oded Shimon ( ods15 ods15 dyndns org ) + * @author Maxim Gavrilov ( maxim.gavrilov gmail com ) + */ + +/* + * supported tools + * + * Support? Name + * N (code in SoC repo) gain control + * Y block switching + * Y window shapes - standard + * N window shapes - Low Delay + * Y filterbank - standard + * N (code in SoC repo) filterbank - Scalable Sample Rate + * Y Temporal Noise Shaping + * Y Long Term Prediction + * Y intensity stereo + * Y channel coupling + * Y frequency domain prediction + * Y Perceptual Noise Substitution + * Y Mid/Side stereo + * N Scalable Inverse AAC Quantization + * N Frequency Selective Switch + * N upsampling filter + * Y quantization & coding - AAC + * N quantization & coding - TwinVQ + * N quantization & coding - BSAC + * N AAC Error Resilience tools + * N Error Resilience payload syntax + * N Error Protection tool + * N CELP + * N Silence Compression + * N HVXC + * N HVXC 4kbits/s VR + * N Structured Audio tools + * N Structured Audio Sample Bank Format + * N MIDI + * N Harmonic and Individual Lines plus Noise + * N Text-To-Speech Interface + * Y Spectral Band Replication + * Y (not in this code) Layer-1 + * Y (not in this code) Layer-2 + * Y (not in this code) Layer-3 + * N SinuSoidal Coding (Transient, Sinusoid, Noise) + * Y Parametric Stereo + * N Direct Stream Transfer + * + * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication. + * - HE AAC v2 comprises LC AAC with Spectral Band Replication and + Parametric Stereo. + */ + +#include "libavutil/float_dsp.h" +#include "libavutil/opt.h" +#include "avcodec.h" +#include "internal.h" +#include "get_bits.h" +#include "fft.h" +#include "fmtconvert.h" +#include "lpc.h" +#include "kbdwin.h" +#include "sinewin.h" + +#include "aac.h" +#include "aactab.h" +#include "aacdectab.h" +#include "cbrt_tablegen.h" +#include "sbr.h" +#include "aacsbr.h" +#include "mpeg4audio.h" +#include "aacadtsdec.h" +#include "libavutil/intfloat.h" + +#include <assert.h> +#include <errno.h> +#include <math.h> +#include <string.h> + +#if ARCH_ARM +# include "arm/aac.h" +#elif ARCH_MIPS +# include "mips/aacdec_mips.h" +#endif + +static VLC vlc_scalefactors; +static VLC vlc_spectral[11]; + +static int output_configure(AACContext *ac, + uint8_t layout_map[MAX_ELEM_ID*4][3], int tags, + enum OCStatus oc_type, int get_new_frame); + +#define overread_err "Input buffer exhausted before END element found\n" + +static int count_channels(uint8_t (*layout)[3], int tags) +{ + int i, sum = 0; + for (i = 0; i < tags; i++) { + int syn_ele = layout[i][0]; + int pos = layout[i][2]; + sum += (1 + (syn_ele == TYPE_CPE)) * + (pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC); + } + return sum; +} + +/** + * Check for the channel element in the current channel position configuration. + * If it exists, make sure the appropriate element is allocated and map the + * channel order to match the internal FFmpeg channel layout. + * + * @param che_pos current channel position configuration + * @param type channel element type + * @param id channel element id + * @param channels count of the number of channels in the configuration + * + * @return Returns error status. 0 - OK, !0 - error + */ +static av_cold int che_configure(AACContext *ac, + enum ChannelPosition che_pos, + int type, int id, int *channels) +{ + if (che_pos) { + if (!ac->che[type][id]) { + if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement)))) + return AVERROR(ENOMEM); + ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr); + } + if (type != TYPE_CCE) { + if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) { + av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n"); + return AVERROR_INVALIDDATA; + } + ac->output_element[(*channels)++] = &ac->che[type][id]->ch[0]; + if (type == TYPE_CPE || + (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) { + ac->output_element[(*channels)++] = &ac->che[type][id]->ch[1]; + } + } + } else { + if (ac->che[type][id]) + ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr); + av_freep(&ac->che[type][id]); + } + return 0; +} + +static int frame_configure_elements(AVCodecContext *avctx) +{ + AACContext *ac = avctx->priv_data; + int type, id, ch, ret; + + /* set channel pointers to internal buffers by default */ + for (type = 0; type < 4; type++) { + for (id = 0; id < MAX_ELEM_ID; id++) { + ChannelElement *che = ac->che[type][id]; + if (che) { + che->ch[0].ret = che->ch[0].ret_buf; + che->ch[1].ret = che->ch[1].ret_buf; + } + } + } + + /* get output buffer */ + av_frame_unref(ac->frame); + ac->frame->nb_samples = 2048; + if ((ret = ff_get_buffer(avctx, ac->frame, 0)) < 0) + return ret; + + /* map output channel pointers to AVFrame data */ + for (ch = 0; ch < avctx->channels; ch++) { + if (ac->output_element[ch]) + ac->output_element[ch]->ret = (float *)ac->frame->extended_data[ch]; + } + + return 0; +} + +struct elem_to_channel { + uint64_t av_position; + uint8_t syn_ele; + uint8_t elem_id; + uint8_t aac_position; +}; + +static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID], + uint8_t (*layout_map)[3], int offset, uint64_t left, + uint64_t right, int pos) +{ + if (layout_map[offset][0] == TYPE_CPE) { + e2c_vec[offset] = (struct elem_to_channel) { + .av_position = left | right, .syn_ele = TYPE_CPE, + .elem_id = layout_map[offset ][1], .aac_position = pos }; + return 1; + } else { + e2c_vec[offset] = (struct elem_to_channel) { + .av_position = left, .syn_ele = TYPE_SCE, + .elem_id = layout_map[offset ][1], .aac_position = pos }; + e2c_vec[offset + 1] = (struct elem_to_channel) { + .av_position = right, .syn_ele = TYPE_SCE, + .elem_id = layout_map[offset + 1][1], .aac_position = pos }; + return 2; + } +} + +static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos, int *current) { + int num_pos_channels = 0; + int first_cpe = 0; + int sce_parity = 0; + int i; + for (i = *current; i < tags; i++) { + if (layout_map[i][2] != pos) + break; + if (layout_map[i][0] == TYPE_CPE) { + if (sce_parity) { + if (pos == AAC_CHANNEL_FRONT && !first_cpe) { + sce_parity = 0; + } else { + return -1; + } + } + num_pos_channels += 2; + first_cpe = 1; + } else { + num_pos_channels++; + sce_parity ^= 1; + } + } + if (sce_parity && + ((pos == AAC_CHANNEL_FRONT && first_cpe) || pos == AAC_CHANNEL_SIDE)) + return -1; + *current = i; + return num_pos_channels; +} + +static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags) +{ + int i, n, total_non_cc_elements; + struct elem_to_channel e2c_vec[4*MAX_ELEM_ID] = {{ 0 }}; + int num_front_channels, num_side_channels, num_back_channels; + uint64_t layout; + + if (FF_ARRAY_ELEMS(e2c_vec) < tags) + return 0; + + i = 0; + num_front_channels = + count_paired_channels(layout_map, tags, AAC_CHANNEL_FRONT, &i); + if (num_front_channels < 0) + return 0; + num_side_channels = + count_paired_channels(layout_map, tags, AAC_CHANNEL_SIDE, &i); + if (num_side_channels < 0) + return 0; + num_back_channels = + count_paired_channels(layout_map, tags, AAC_CHANNEL_BACK, &i); + if (num_back_channels < 0) + return 0; + + i = 0; + if (num_front_channels & 1) { + e2c_vec[i] = (struct elem_to_channel) { + .av_position = AV_CH_FRONT_CENTER, .syn_ele = TYPE_SCE, + .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_FRONT }; + i++; + num_front_channels--; + } + if (num_front_channels >= 4) { + i += assign_pair(e2c_vec, layout_map, i, + AV_CH_FRONT_LEFT_OF_CENTER, + AV_CH_FRONT_RIGHT_OF_CENTER, + AAC_CHANNEL_FRONT); + num_front_channels -= 2; + } + if (num_front_channels >= 2) { + i += assign_pair(e2c_vec, layout_map, i, + AV_CH_FRONT_LEFT, + AV_CH_FRONT_RIGHT, + AAC_CHANNEL_FRONT); + num_front_channels -= 2; + } + while (num_front_channels >= 2) { + i += assign_pair(e2c_vec, layout_map, i, + UINT64_MAX, + UINT64_MAX, + AAC_CHANNEL_FRONT); + num_front_channels -= 2; + } + + if (num_side_channels >= 2) { + i += assign_pair(e2c_vec, layout_map, i, + AV_CH_SIDE_LEFT, + AV_CH_SIDE_RIGHT, + AAC_CHANNEL_FRONT); + num_side_channels -= 2; + } + while (num_side_channels >= 2) { + i += assign_pair(e2c_vec, layout_map, i, + UINT64_MAX, + UINT64_MAX, + AAC_CHANNEL_SIDE); + num_side_channels -= 2; + } + + while (num_back_channels >= 4) { + i += assign_pair(e2c_vec, layout_map, i, + UINT64_MAX, + UINT64_MAX, + AAC_CHANNEL_BACK); + num_back_channels -= 2; + } + if (num_back_channels >= 2) { + i += assign_pair(e2c_vec, layout_map, i, + AV_CH_BACK_LEFT, + AV_CH_BACK_RIGHT, + AAC_CHANNEL_BACK); + num_back_channels -= 2; + } + if (num_back_channels) { + e2c_vec[i] = (struct elem_to_channel) { + .av_position = AV_CH_BACK_CENTER, .syn_ele = TYPE_SCE, + .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_BACK }; + i++; + num_back_channels--; + } + + if (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) { + e2c_vec[i] = (struct elem_to_channel) { + .av_position = AV_CH_LOW_FREQUENCY, .syn_ele = TYPE_LFE, + .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE }; + i++; + } + while (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) { + e2c_vec[i] = (struct elem_to_channel) { + .av_position = UINT64_MAX, .syn_ele = TYPE_LFE, + .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE }; + i++; + } + + // Must choose a stable sort + total_non_cc_elements = n = i; + do { + int next_n = 0; + for (i = 1; i < n; i++) { + if (e2c_vec[i-1].av_position > e2c_vec[i].av_position) { + FFSWAP(struct elem_to_channel, e2c_vec[i-1], e2c_vec[i]); + next_n = i; + } + } + n = next_n; + } while (n > 0); + + layout = 0; + for (i = 0; i < total_non_cc_elements; i++) { + layout_map[i][0] = e2c_vec[i].syn_ele; + layout_map[i][1] = e2c_vec[i].elem_id; + layout_map[i][2] = e2c_vec[i].aac_position; + if (e2c_vec[i].av_position != UINT64_MAX) { + layout |= e2c_vec[i].av_position; + } + } + + return layout; +} + +/** + * Save current output configuration if and only if it has been locked. + */ +static void push_output_configuration(AACContext *ac) { + if (ac->oc[1].status == OC_LOCKED) { + ac->oc[0] = ac->oc[1]; + } + ac->oc[1].status = OC_NONE; +} + +/** + * Restore the previous output configuration if and only if the current + * configuration is unlocked. + */ +static void pop_output_configuration(AACContext *ac) { + if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) { + ac->oc[1] = ac->oc[0]; + ac->avctx->channels = ac->oc[1].channels; + ac->avctx->channel_layout = ac->oc[1].channel_layout; + output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, + ac->oc[1].status, 0); + } +} + +/** + * Configure output channel order based on the current program configuration element. + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int output_configure(AACContext *ac, + uint8_t layout_map[MAX_ELEM_ID*4][3], int tags, + enum OCStatus oc_type, int get_new_frame) +{ + AVCodecContext *avctx = ac->avctx; + int i, channels = 0, ret; + uint64_t layout = 0; + + if (ac->oc[1].layout_map != layout_map) { + memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0])); + ac->oc[1].layout_map_tags = tags; + } + + // Try to sniff a reasonable channel order, otherwise output the + // channels in the order the PCE declared them. + if (avctx->request_channel_layout != AV_CH_LAYOUT_NATIVE) + layout = sniff_channel_order(layout_map, tags); + for (i = 0; i < tags; i++) { + int type = layout_map[i][0]; + int id = layout_map[i][1]; + int position = layout_map[i][2]; + // Allocate or free elements depending on if they are in the + // current program configuration. + ret = che_configure(ac, position, type, id, &channels); + if (ret < 0) + return ret; + } + if (ac->oc[1].m4ac.ps == 1 && channels == 2) { + if (layout == AV_CH_FRONT_CENTER) { + layout = AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT; + } else { + layout = 0; + } + } + + memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0])); + if (layout) avctx->channel_layout = layout; + ac->oc[1].channel_layout = layout; + avctx->channels = ac->oc[1].channels = channels; + ac->oc[1].status = oc_type; + + if (get_new_frame) { + if ((ret = frame_configure_elements(ac->avctx)) < 0) + return ret; + } + + return 0; +} + +static void flush(AVCodecContext *avctx) +{ + AACContext *ac= avctx->priv_data; + int type, i, j; + + for (type = 3; type >= 0; type--) { + for (i = 0; i < MAX_ELEM_ID; i++) { + ChannelElement *che = ac->che[type][i]; + if (che) { + for (j = 0; j <= 1; j++) { + memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved)); + } + } + } + } +} + +/** + * Set up channel positions based on a default channel configuration + * as specified in table 1.17. + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int set_default_channel_config(AVCodecContext *avctx, + uint8_t (*layout_map)[3], + int *tags, + int channel_config) +{ + if (channel_config < 1 || channel_config > 7) { + av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n", + channel_config); + return -1; + } + *tags = tags_per_config[channel_config]; + memcpy(layout_map, aac_channel_layout_map[channel_config-1], *tags * sizeof(*layout_map)); + return 0; +} + +static ChannelElement *get_che(AACContext *ac, int type, int elem_id) +{ + // For PCE based channel configurations map the channels solely based on tags. + if (!ac->oc[1].m4ac.chan_config) { + return ac->tag_che_map[type][elem_id]; + } + // Allow single CPE stereo files to be signalled with mono configuration. + if (!ac->tags_mapped && type == TYPE_CPE && ac->oc[1].m4ac.chan_config == 1) { + uint8_t layout_map[MAX_ELEM_ID*4][3]; + int layout_map_tags; + push_output_configuration(ac); + + av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n"); + + if (set_default_channel_config(ac->avctx, layout_map, &layout_map_tags, + 2) < 0) + return NULL; + if (output_configure(ac, layout_map, layout_map_tags, + OC_TRIAL_FRAME, 1) < 0) + return NULL; + + ac->oc[1].m4ac.chan_config = 2; + ac->oc[1].m4ac.ps = 0; + } + // And vice-versa + if (!ac->tags_mapped && type == TYPE_SCE && ac->oc[1].m4ac.chan_config == 2) { + uint8_t layout_map[MAX_ELEM_ID*4][3]; + int layout_map_tags; + push_output_configuration(ac); + + av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n"); + + if (set_default_channel_config(ac->avctx, layout_map, &layout_map_tags, + 1) < 0) + return NULL; + if (output_configure(ac, layout_map, layout_map_tags, + OC_TRIAL_FRAME, 1) < 0) + return NULL; + + ac->oc[1].m4ac.chan_config = 1; + if (ac->oc[1].m4ac.sbr) + ac->oc[1].m4ac.ps = -1; + } + // For indexed channel configurations map the channels solely based on position. + switch (ac->oc[1].m4ac.chan_config) { + case 7: + if (ac->tags_mapped == 3 && type == TYPE_CPE) { + ac->tags_mapped++; + return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2]; + } + case 6: + /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1] + instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have + encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */ + if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { + ac->tags_mapped++; + return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0]; + } + case 5: + if (ac->tags_mapped == 2 && type == TYPE_CPE) { + ac->tags_mapped++; + return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1]; + } + case 4: + if (ac->tags_mapped == 2 && ac->oc[1].m4ac.chan_config == 4 && type == TYPE_SCE) { + ac->tags_mapped++; + return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; + } + case 3: + case 2: + if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) && type == TYPE_CPE) { + ac->tags_mapped++; + return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0]; + } else if (ac->oc[1].m4ac.chan_config == 2) { + return NULL; + } + case 1: + if (!ac->tags_mapped && type == TYPE_SCE) { + ac->tags_mapped++; + return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0]; + } + default: + return NULL; + } +} + +/** + * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit. + * + * @param type speaker type/position for these channels + */ +static void decode_channel_map(uint8_t layout_map[][3], + enum ChannelPosition type, + GetBitContext *gb, int n) +{ + while (n--) { + enum RawDataBlockType syn_ele; + switch (type) { + case AAC_CHANNEL_FRONT: + case AAC_CHANNEL_BACK: + case AAC_CHANNEL_SIDE: + syn_ele = get_bits1(gb); + break; + case AAC_CHANNEL_CC: + skip_bits1(gb); + syn_ele = TYPE_CCE; + break; + case AAC_CHANNEL_LFE: + syn_ele = TYPE_LFE; + break; + default: + av_assert0(0); + } + layout_map[0][0] = syn_ele; + layout_map[0][1] = get_bits(gb, 4); + layout_map[0][2] = type; + layout_map++; + } +} + +/** + * Decode program configuration element; reference: table 4.2. + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac, + uint8_t (*layout_map)[3], + GetBitContext *gb) +{ + int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index; + int comment_len; + int tags; + + skip_bits(gb, 2); // object_type + + sampling_index = get_bits(gb, 4); + if (m4ac->sampling_index != sampling_index) + av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n"); + + num_front = get_bits(gb, 4); + num_side = get_bits(gb, 4); + num_back = get_bits(gb, 4); + num_lfe = get_bits(gb, 2); + num_assoc_data = get_bits(gb, 3); + num_cc = get_bits(gb, 4); + + if (get_bits1(gb)) + skip_bits(gb, 4); // mono_mixdown_tag + if (get_bits1(gb)) + skip_bits(gb, 4); // stereo_mixdown_tag + + if (get_bits1(gb)) + skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround + + if (get_bits_left(gb) < 4 * (num_front + num_side + num_back + num_lfe + num_assoc_data + num_cc)) { + av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); + return -1; + } + decode_channel_map(layout_map , AAC_CHANNEL_FRONT, gb, num_front); + tags = num_front; + decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE, gb, num_side); + tags += num_side; + decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK, gb, num_back); + tags += num_back; + decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE, gb, num_lfe); + tags += num_lfe; + + skip_bits_long(gb, 4 * num_assoc_data); + + decode_channel_map(layout_map + tags, AAC_CHANNEL_CC, gb, num_cc); + tags += num_cc; + + align_get_bits(gb); + + /* comment field, first byte is length */ + comment_len = get_bits(gb, 8) * 8; + if (get_bits_left(gb) < comment_len) { + av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); + return -1; + } + skip_bits_long(gb, comment_len); + return tags; +} + +/** + * Decode GA "General Audio" specific configuration; reference: table 4.1. + * + * @param ac pointer to AACContext, may be null + * @param avctx pointer to AVCCodecContext, used for logging + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx, + GetBitContext *gb, + MPEG4AudioConfig *m4ac, + int channel_config) +{ + int extension_flag, ret; + uint8_t layout_map[MAX_ELEM_ID*4][3]; + int tags = 0; + + if (get_bits1(gb)) { // frameLengthFlag + avpriv_request_sample(avctx, "960/120 MDCT window"); + return AVERROR_PATCHWELCOME; + } + + if (get_bits1(gb)) // dependsOnCoreCoder + skip_bits(gb, 14); // coreCoderDelay + extension_flag = get_bits1(gb); + + if (m4ac->object_type == AOT_AAC_SCALABLE || + m4ac->object_type == AOT_ER_AAC_SCALABLE) + skip_bits(gb, 3); // layerNr + + if (channel_config == 0) { + skip_bits(gb, 4); // element_instance_tag + tags = decode_pce(avctx, m4ac, layout_map, gb); + if (tags < 0) + return tags; + } else { + if ((ret = set_default_channel_config(avctx, layout_map, &tags, channel_config))) + return ret; + } + + if (count_channels(layout_map, tags) > 1) { + m4ac->ps = 0; + } else if (m4ac->sbr == 1 && m4ac->ps == -1) + m4ac->ps = 1; + + if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) + return ret; + + if (extension_flag) { + switch (m4ac->object_type) { + case AOT_ER_BSAC: + skip_bits(gb, 5); // numOfSubFrame + skip_bits(gb, 11); // layer_length + break; + case AOT_ER_AAC_LC: + case AOT_ER_AAC_LTP: + case AOT_ER_AAC_SCALABLE: + case AOT_ER_AAC_LD: + skip_bits(gb, 3); /* aacSectionDataResilienceFlag + * aacScalefactorDataResilienceFlag + * aacSpectralDataResilienceFlag + */ + break; + } + skip_bits1(gb); // extensionFlag3 (TBD in version 3) + } + return 0; +} + +/** + * Decode audio specific configuration; reference: table 1.13. + * + * @param ac pointer to AACContext, may be null + * @param avctx pointer to AVCCodecContext, used for logging + * @param m4ac pointer to MPEG4AudioConfig, used for parsing + * @param data pointer to buffer holding an audio specific config + * @param bit_size size of audio specific config or data in bits + * @param sync_extension look for an appended sync extension + * + * @return Returns error status or number of consumed bits. <0 - error + */ +static int decode_audio_specific_config(AACContext *ac, + AVCodecContext *avctx, + MPEG4AudioConfig *m4ac, + const uint8_t *data, int bit_size, + int sync_extension) +{ + GetBitContext gb; + int i; + int ret; + + av_dlog(avctx, "audio specific config size %d\n", bit_size >> 3); + for (i = 0; i < bit_size >> 3; i++) + av_dlog(avctx, "%02x ", data[i]); + av_dlog(avctx, "\n"); + + if ((ret = init_get_bits(&gb, data, bit_size)) < 0) + return ret; + + if ((i = avpriv_mpeg4audio_get_config(m4ac, data, bit_size, sync_extension)) < 0) + return -1; + if (m4ac->sampling_index > 12) { + av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index); + return -1; + } + + skip_bits_long(&gb, i); + + switch (m4ac->object_type) { + case AOT_AAC_MAIN: + case AOT_AAC_LC: + case AOT_AAC_LTP: + if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config)) + return -1; + break; + default: + av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n", + m4ac->sbr == 1? "SBR+" : "", m4ac->object_type); + return -1; + } + + av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n", + m4ac->object_type, m4ac->chan_config, m4ac->sampling_index, + m4ac->sample_rate, m4ac->sbr, m4ac->ps); + + return get_bits_count(&gb); +} + +/** + * linear congruential pseudorandom number generator + * + * @param previous_val pointer to the current state of the generator + * + * @return Returns a 32-bit pseudorandom integer + */ +static av_always_inline int lcg_random(unsigned previous_val) +{ + union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 }; + return v.s; +} + +static av_always_inline void reset_predict_state(PredictorState *ps) +{ + ps->r0 = 0.0f; + ps->r1 = 0.0f; + ps->cor0 = 0.0f; + ps->cor1 = 0.0f; + ps->var0 = 1.0f; + ps->var1 = 1.0f; +} + +static void reset_all_predictors(PredictorState *ps) +{ + int i; + for (i = 0; i < MAX_PREDICTORS; i++) + reset_predict_state(&ps[i]); +} + +static int sample_rate_idx (int rate) +{ + if (92017 <= rate) return 0; + else if (75132 <= rate) return 1; + else if (55426 <= rate) return 2; + else if (46009 <= rate) return 3; + else if (37566 <= rate) return 4; + else if (27713 <= rate) return 5; + else if (23004 <= rate) return 6; + else if (18783 <= rate) return 7; + else if (13856 <= rate) return 8; + else if (11502 <= rate) return 9; + else if (9391 <= rate) return 10; + else return 11; +} + +static void reset_predictor_group(PredictorState *ps, int group_num) +{ + int i; + for (i = group_num - 1; i < MAX_PREDICTORS; i += 30) + reset_predict_state(&ps[i]); +} + +#define AAC_INIT_VLC_STATIC(num, size) \ + INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \ + ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \ + ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \ + size); + +static void aacdec_init(AACContext *ac); + +static av_cold int aac_decode_init(AVCodecContext *avctx) +{ + AACContext *ac = avctx->priv_data; + + ac->avctx = avctx; + ac->oc[1].m4ac.sample_rate = avctx->sample_rate; + + aacdec_init(ac); + + avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; + + if (avctx->extradata_size > 0) { + if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac, + avctx->extradata, + avctx->extradata_size*8, 1) < 0) + return -1; + } else { + int sr, i; + uint8_t layout_map[MAX_ELEM_ID*4][3]; + int layout_map_tags; + + sr = sample_rate_idx(avctx->sample_rate); + ac->oc[1].m4ac.sampling_index = sr; + ac->oc[1].m4ac.channels = avctx->channels; + ac->oc[1].m4ac.sbr = -1; + ac->oc[1].m4ac.ps = -1; + + for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++) + if (ff_mpeg4audio_channels[i] == avctx->channels) + break; + if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) { + i = 0; + } + ac->oc[1].m4ac.chan_config = i; + + if (ac->oc[1].m4ac.chan_config) { + int ret = set_default_channel_config(avctx, layout_map, + &layout_map_tags, ac->oc[1].m4ac.chan_config); + if (!ret) + output_configure(ac, layout_map, layout_map_tags, + OC_GLOBAL_HDR, 0); + else if (avctx->err_recognition & AV_EF_EXPLODE) + return AVERROR_INVALIDDATA; + } + } + + if (avctx->channels > MAX_CHANNELS) { + av_log(avctx, AV_LOG_ERROR, "Too many channels\n"); + return AVERROR_INVALIDDATA; + } + + AAC_INIT_VLC_STATIC( 0, 304); + AAC_INIT_VLC_STATIC( 1, 270); + AAC_INIT_VLC_STATIC( 2, 550); + AAC_INIT_VLC_STATIC( 3, 300); + AAC_INIT_VLC_STATIC( 4, 328); + AAC_INIT_VLC_STATIC( 5, 294); + AAC_INIT_VLC_STATIC( 6, 306); + AAC_INIT_VLC_STATIC( 7, 268); + AAC_INIT_VLC_STATIC( 8, 510); + AAC_INIT_VLC_STATIC( 9, 366); + AAC_INIT_VLC_STATIC(10, 462); + + ff_aac_sbr_init(); + + ff_fmt_convert_init(&ac->fmt_conv, avctx); + avpriv_float_dsp_init(&ac->fdsp, avctx->flags & CODEC_FLAG_BITEXACT); + + ac->random_state = 0x1f2e3d4c; + + ff_aac_tableinit(); + + INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code), + ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]), + ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]), + 352); + + ff_mdct_init(&ac->mdct, 11, 1, 1.0 / (32768.0 * 1024.0)); + ff_mdct_init(&ac->mdct_small, 8, 1, 1.0 / (32768.0 * 128.0)); + ff_mdct_init(&ac->mdct_ltp, 11, 0, -2.0 * 32768.0); + // window initialization + ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024); + ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128); + ff_init_ff_sine_windows(10); + ff_init_ff_sine_windows( 7); + + cbrt_tableinit(); + + return 0; +} + +/** + * Skip data_stream_element; reference: table 4.10. + */ +static int skip_data_stream_element(AACContext *ac, GetBitContext *gb) +{ + int byte_align = get_bits1(gb); + int count = get_bits(gb, 8); + if (count == 255) + count += get_bits(gb, 8); + if (byte_align) + align_get_bits(gb); + + if (get_bits_left(gb) < 8 * count) { + av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err); + return -1; + } + skip_bits_long(gb, 8 * count); + return 0; +} + +static int decode_prediction(AACContext *ac, IndividualChannelStream *ics, + GetBitContext *gb) +{ + int sfb; + if (get_bits1(gb)) { + ics->predictor_reset_group = get_bits(gb, 5); + if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) { + av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n"); + return -1; + } + } + for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) { + ics->prediction_used[sfb] = get_bits1(gb); + } + return 0; +} + +/** + * Decode Long Term Prediction data; reference: table 4.xx. + */ +static void decode_ltp(LongTermPrediction *ltp, + GetBitContext *gb, uint8_t max_sfb) +{ + int sfb; + + ltp->lag = get_bits(gb, 11); + ltp->coef = ltp_coef[get_bits(gb, 3)]; + for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++) + ltp->used[sfb] = get_bits1(gb); +} + +/** + * Decode Individual Channel Stream info; reference: table 4.6. + */ +static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics, + GetBitContext *gb) +{ + if (get_bits1(gb)) { + av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n"); + return AVERROR_INVALIDDATA; + } + ics->window_sequence[1] = ics->window_sequence[0]; + ics->window_sequence[0] = get_bits(gb, 2); + ics->use_kb_window[1] = ics->use_kb_window[0]; + ics->use_kb_window[0] = get_bits1(gb); + ics->num_window_groups = 1; + ics->group_len[0] = 1; + if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { + int i; + ics->max_sfb = get_bits(gb, 4); + for (i = 0; i < 7; i++) { + if (get_bits1(gb)) { + ics->group_len[ics->num_window_groups - 1]++; + } else { + ics->num_window_groups++; + ics->group_len[ics->num_window_groups - 1] = 1; + } + } + ics->num_windows = 8; + ics->swb_offset = ff_swb_offset_128[ac->oc[1].m4ac.sampling_index]; + ics->num_swb = ff_aac_num_swb_128[ac->oc[1].m4ac.sampling_index]; + ics->tns_max_bands = ff_tns_max_bands_128[ac->oc[1].m4ac.sampling_index]; + ics->predictor_present = 0; + } else { + ics->max_sfb = get_bits(gb, 6); + ics->num_windows = 1; + ics->swb_offset = ff_swb_offset_1024[ac->oc[1].m4ac.sampling_index]; + ics->num_swb = ff_aac_num_swb_1024[ac->oc[1].m4ac.sampling_index]; + ics->tns_max_bands = ff_tns_max_bands_1024[ac->oc[1].m4ac.sampling_index]; + ics->predictor_present = get_bits1(gb); + ics->predictor_reset_group = 0; + if (ics->predictor_present) { + if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) { + if (decode_prediction(ac, ics, gb)) { + goto fail; + } + } else if (ac->oc[1].m4ac.object_type == AOT_AAC_LC) { + av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n"); + goto fail; + } else { + if ((ics->ltp.present = get_bits(gb, 1))) + decode_ltp(&ics->ltp, gb, ics->max_sfb); + } + } + } + + if (ics->max_sfb > ics->num_swb) { + av_log(ac->avctx, AV_LOG_ERROR, + "Number of scalefactor bands in group (%d) exceeds limit (%d).\n", + ics->max_sfb, ics->num_swb); + goto fail; + } + + return 0; +fail: + ics->max_sfb = 0; + return AVERROR_INVALIDDATA; +} + +/** + * Decode band types (section_data payload); reference: table 4.46. + * + * @param band_type array of the used band type + * @param band_type_run_end array of the last scalefactor band of a band type run + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int decode_band_types(AACContext *ac, enum BandType band_type[120], + int band_type_run_end[120], GetBitContext *gb, + IndividualChannelStream *ics) +{ + int g, idx = 0; + const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5; + for (g = 0; g < ics->num_window_groups; g++) { + int k = 0; + while (k < ics->max_sfb) { + uint8_t sect_end = k; + int sect_len_incr; + int sect_band_type = get_bits(gb, 4); + if (sect_band_type == 12) { + av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n"); + return -1; + } + do { + sect_len_incr = get_bits(gb, bits); + sect_end += sect_len_incr; + if (get_bits_left(gb) < 0) { + av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err); + return -1; + } + if (sect_end > ics->max_sfb) { + av_log(ac->avctx, AV_LOG_ERROR, + "Number of bands (%d) exceeds limit (%d).\n", + sect_end, ics->max_sfb); + return -1; + } + } while (sect_len_incr == (1 << bits) - 1); + for (; k < sect_end; k++) { + band_type [idx] = sect_band_type; + band_type_run_end[idx++] = sect_end; + } + } + } + return 0; +} + +/** + * Decode scalefactors; reference: table 4.47. + * + * @param global_gain first scalefactor value as scalefactors are differentially coded + * @param band_type array of the used band type + * @param band_type_run_end array of the last scalefactor band of a band type run + * @param sf array of scalefactors or intensity stereo positions + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb, + unsigned int global_gain, + IndividualChannelStream *ics, + enum BandType band_type[120], + int band_type_run_end[120]) +{ + int g, i, idx = 0; + int offset[3] = { global_gain, global_gain - 90, 0 }; + int clipped_offset; + int noise_flag = 1; + for (g = 0; g < ics->num_window_groups; g++) { + for (i = 0; i < ics->max_sfb;) { + int run_end = band_type_run_end[idx]; + if (band_type[idx] == ZERO_BT) { + for (; i < run_end; i++, idx++) + sf[idx] = 0.; + } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) { + for (; i < run_end; i++, idx++) { + offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; + clipped_offset = av_clip(offset[2], -155, 100); + if (offset[2] != clipped_offset) { + avpriv_request_sample(ac->avctx, + "If you heard an audible artifact, there may be a bug in the decoder. " + "Clipped intensity stereo position (%d -> %d)", + offset[2], clipped_offset); + } + sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO]; + } + } else if (band_type[idx] == NOISE_BT) { + for (; i < run_end; i++, idx++) { + if (noise_flag-- > 0) + offset[1] += get_bits(gb, 9) - 256; + else + offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; + clipped_offset = av_clip(offset[1], -100, 155); + if (offset[1] != clipped_offset) { + avpriv_request_sample(ac->avctx, + "If you heard an audible artifact, there may be a bug in the decoder. " + "Clipped noise gain (%d -> %d)", + offset[1], clipped_offset); + } + sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO]; + } + } else { + for (; i < run_end; i++, idx++) { + offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; + if (offset[0] > 255U) { + av_log(ac->avctx, AV_LOG_ERROR, + "Scalefactor (%d) out of range.\n", offset[0]); + return -1; + } + sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO]; + } + } + } + } + return 0; +} + +/** + * Decode pulse data; reference: table 4.7. + */ +static int decode_pulses(Pulse *pulse, GetBitContext *gb, + const uint16_t *swb_offset, int num_swb) +{ + int i, pulse_swb; + pulse->num_pulse = get_bits(gb, 2) + 1; + pulse_swb = get_bits(gb, 6); + if (pulse_swb >= num_swb) + return -1; + pulse->pos[0] = swb_offset[pulse_swb]; + pulse->pos[0] += get_bits(gb, 5); + if (pulse->pos[0] > 1023) + return -1; + pulse->amp[0] = get_bits(gb, 4); + for (i = 1; i < pulse->num_pulse; i++) { + pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1]; + if (pulse->pos[i] > 1023) + return -1; + pulse->amp[i] = get_bits(gb, 4); + } + return 0; +} + +/** + * Decode Temporal Noise Shaping data; reference: table 4.48. + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns, + GetBitContext *gb, const IndividualChannelStream *ics) +{ + int w, filt, i, coef_len, coef_res, coef_compress; + const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE; + const int tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12; + for (w = 0; w < ics->num_windows; w++) { + if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) { + coef_res = get_bits1(gb); + + for (filt = 0; filt < tns->n_filt[w]; filt++) { + int tmp2_idx; + tns->length[w][filt] = get_bits(gb, 6 - 2 * is8); + + if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) { + av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n", + tns->order[w][filt], tns_max_order); + tns->order[w][filt] = 0; + return -1; + } + if (tns->order[w][filt]) { + tns->direction[w][filt] = get_bits1(gb); + coef_compress = get_bits1(gb); + coef_len = coef_res + 3 - coef_compress; + tmp2_idx = 2 * coef_compress + coef_res; + + for (i = 0; i < tns->order[w][filt]; i++) + tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]; + } + } + } + } + return 0; +} + +/** + * Decode Mid/Side data; reference: table 4.54. + * + * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; + * [1] mask is decoded from bitstream; [2] mask is all 1s; + * [3] reserved for scalable AAC + */ +static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb, + int ms_present) +{ + int idx; + if (ms_present == 1) { + for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++) + cpe->ms_mask[idx] = get_bits1(gb); + } else if (ms_present == 2) { + memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask[0]) * cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb); + } +} + +#ifndef VMUL2 +static inline float *VMUL2(float *dst, const float *v, unsigned idx, + const float *scale) +{ + float s = *scale; + *dst++ = v[idx & 15] * s; + *dst++ = v[idx>>4 & 15] * s; + return dst; +} +#endif + +#ifndef VMUL4 +static inline float *VMUL4(float *dst, const float *v, unsigned idx, + const float *scale) +{ + float s = *scale; + *dst++ = v[idx & 3] * s; + *dst++ = v[idx>>2 & 3] * s; + *dst++ = v[idx>>4 & 3] * s; + *dst++ = v[idx>>6 & 3] * s; + return dst; +} +#endif + +#ifndef VMUL2S +static inline float *VMUL2S(float *dst, const float *v, unsigned idx, + unsigned sign, const float *scale) +{ + union av_intfloat32 s0, s1; + + s0.f = s1.f = *scale; + s0.i ^= sign >> 1 << 31; + s1.i ^= sign << 31; + + *dst++ = v[idx & 15] * s0.f; + *dst++ = v[idx>>4 & 15] * s1.f; + + return dst; +} +#endif + +#ifndef VMUL4S +static inline float *VMUL4S(float *dst, const float *v, unsigned idx, + unsigned sign, const float *scale) +{ + unsigned nz = idx >> 12; + union av_intfloat32 s = { .f = *scale }; + union av_intfloat32 t; + + t.i = s.i ^ (sign & 1U<<31); + *dst++ = v[idx & 3] * t.f; + + sign <<= nz & 1; nz >>= 1; + t.i = s.i ^ (sign & 1U<<31); + *dst++ = v[idx>>2 & 3] * t.f; + + sign <<= nz & 1; nz >>= 1; + t.i = s.i ^ (sign & 1U<<31); + *dst++ = v[idx>>4 & 3] * t.f; + + sign <<= nz & 1; + t.i = s.i ^ (sign & 1U<<31); + *dst++ = v[idx>>6 & 3] * t.f; + + return dst; +} +#endif + +/** + * Decode spectral data; reference: table 4.50. + * Dequantize and scale spectral data; reference: 4.6.3.3. + * + * @param coef array of dequantized, scaled spectral data + * @param sf array of scalefactors or intensity stereo positions + * @param pulse_present set if pulses are present + * @param pulse pointer to pulse data struct + * @param band_type array of the used band type + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024], + GetBitContext *gb, const float sf[120], + int pulse_present, const Pulse *pulse, + const IndividualChannelStream *ics, + enum BandType band_type[120]) +{ + int i, k, g, idx = 0; + const int c = 1024 / ics->num_windows; + const uint16_t *offsets = ics->swb_offset; + float *coef_base = coef; + + for (g = 0; g < ics->num_windows; g++) + memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb])); + + for (g = 0; g < ics->num_window_groups; g++) { + unsigned g_len = ics->group_len[g]; + + for (i = 0; i < ics->max_sfb; i++, idx++) { + const unsigned cbt_m1 = band_type[idx] - 1; + float *cfo = coef + offsets[i]; + int off_len = offsets[i + 1] - offsets[i]; + int group; + + if (cbt_m1 >= INTENSITY_BT2 - 1) { + for (group = 0; group < g_len; group++, cfo+=128) { + memset(cfo, 0, off_len * sizeof(float)); + } + } else if (cbt_m1 == NOISE_BT - 1) { + for (group = 0; group < g_len; group++, cfo+=128) { + float scale; + float band_energy; + + for (k = 0; k < off_len; k++) { + ac->random_state = lcg_random(ac->random_state); + cfo[k] = ac->random_state; + } + + band_energy = ac->fdsp.scalarproduct_float(cfo, cfo, off_len); + scale = sf[idx] / sqrtf(band_energy); + ac->fdsp.vector_fmul_scalar(cfo, cfo, scale, off_len); + } + } else { + const float *vq = ff_aac_codebook_vector_vals[cbt_m1]; + const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1]; + VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table; + OPEN_READER(re, gb); + + switch (cbt_m1 >> 1) { + case 0: + for (group = 0; group < g_len; group++, cfo+=128) { + float *cf = cfo; + int len = off_len; + + do { + int code; + unsigned cb_idx; + + UPDATE_CACHE(re, gb); + GET_VLC(code, re, gb, vlc_tab, 8, 2); + cb_idx = cb_vector_idx[code]; + cf = VMUL4(cf, vq, cb_idx, sf + idx); + } while (len -= 4); + } + break; + + case 1: + for (group = 0; group < g_len; group++, cfo+=128) { + float *cf = cfo; + int len = off_len; + + do { + int code; + unsigned nnz; + unsigned cb_idx; + uint32_t bits; + + UPDATE_CACHE(re, gb); + GET_VLC(code, re, gb, vlc_tab, 8, 2); + cb_idx = cb_vector_idx[code]; + nnz = cb_idx >> 8 & 15; + bits = nnz ? GET_CACHE(re, gb) : 0; + LAST_SKIP_BITS(re, gb, nnz); + cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx); + } while (len -= 4); + } + break; + + case 2: + for (group = 0; group < g_len; group++, cfo+=128) { + float *cf = cfo; + int len = off_len; + + do { + int code; + unsigned cb_idx; + + UPDATE_CACHE(re, gb); + GET_VLC(code, re, gb, vlc_tab, 8, 2); + cb_idx = cb_vector_idx[code]; + cf = VMUL2(cf, vq, cb_idx, sf + idx); + } while (len -= 2); + } + break; + + case 3: + case 4: + for (group = 0; group < g_len; group++, cfo+=128) { + float *cf = cfo; + int len = off_len; + + do { + int code; + unsigned nnz; + unsigned cb_idx; + unsigned sign; + + UPDATE_CACHE(re, gb); + GET_VLC(code, re, gb, vlc_tab, 8, 2); + cb_idx = cb_vector_idx[code]; + nnz = cb_idx >> 8 & 15; + sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0; + LAST_SKIP_BITS(re, gb, nnz); + cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx); + } while (len -= 2); + } + break; + + default: + for (group = 0; group < g_len; group++, cfo+=128) { + float *cf = cfo; + uint32_t *icf = (uint32_t *) cf; + int len = off_len; + + do { + int code; + unsigned nzt, nnz; + unsigned cb_idx; + uint32_t bits; + int j; + + UPDATE_CACHE(re, gb); + GET_VLC(code, re, gb, vlc_tab, 8, 2); + + if (!code) { + *icf++ = 0; + *icf++ = 0; + continue; + } + + cb_idx = cb_vector_idx[code]; + nnz = cb_idx >> 12; + nzt = cb_idx >> 8; + bits = SHOW_UBITS(re, gb, nnz) << (32-nnz); + LAST_SKIP_BITS(re, gb, nnz); + + for (j = 0; j < 2; j++) { + if (nzt & 1<<j) { + uint32_t b; + int n; + /* The total length of escape_sequence must be < 22 bits according + to the specification (i.e. max is 111111110xxxxxxxxxxxx). */ + UPDATE_CACHE(re, gb); + b = GET_CACHE(re, gb); + b = 31 - av_log2(~b); + + if (b > 8) { + av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n"); + return -1; + } + + SKIP_BITS(re, gb, b + 1); + b += 4; + n = (1 << b) + SHOW_UBITS(re, gb, b); + LAST_SKIP_BITS(re, gb, b); + *icf++ = cbrt_tab[n] | (bits & 1U<<31); + bits <<= 1; + } else { + unsigned v = ((const uint32_t*)vq)[cb_idx & 15]; + *icf++ = (bits & 1U<<31) | v; + bits <<= !!v; + } + cb_idx >>= 4; + } + } while (len -= 2); + + ac->fdsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len); + } + } + + CLOSE_READER(re, gb); + } + } + coef += g_len << 7; + } + + if (pulse_present) { + idx = 0; + for (i = 0; i < pulse->num_pulse; i++) { + float co = coef_base[ pulse->pos[i] ]; + while (offsets[idx + 1] <= pulse->pos[i]) + idx++; + if (band_type[idx] != NOISE_BT && sf[idx]) { + float ico = -pulse->amp[i]; + if (co) { + co /= sf[idx]; + ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico); + } + coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx]; + } + } + } + return 0; +} + +static av_always_inline float flt16_round(float pf) +{ + union av_intfloat32 tmp; + tmp.f = pf; + tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U; + return tmp.f; +} + +static av_always_inline float flt16_even(float pf) +{ + union av_intfloat32 tmp; + tmp.f = pf; + tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U; + return tmp.f; +} + +static av_always_inline float flt16_trunc(float pf) +{ + union av_intfloat32 pun; + pun.f = pf; + pun.i &= 0xFFFF0000U; + return pun.f; +} + +static av_always_inline void predict(PredictorState *ps, float *coef, + int output_enable) +{ + const float a = 0.953125; // 61.0 / 64 + const float alpha = 0.90625; // 29.0 / 32 + float e0, e1; + float pv; + float k1, k2; + float r0 = ps->r0, r1 = ps->r1; + float cor0 = ps->cor0, cor1 = ps->cor1; + float var0 = ps->var0, var1 = ps->var1; + + k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0; + k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0; + + pv = flt16_round(k1 * r0 + k2 * r1); + if (output_enable) + *coef += pv; + + e0 = *coef; + e1 = e0 - k1 * r0; + + ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1); + ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1)); + ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0); + ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0)); + + ps->r1 = flt16_trunc(a * (r0 - k1 * e0)); + ps->r0 = flt16_trunc(a * e0); +} + +/** + * Apply AAC-Main style frequency domain prediction. + */ +static void apply_prediction(AACContext *ac, SingleChannelElement *sce) +{ + int sfb, k; + + if (!sce->ics.predictor_initialized) { + reset_all_predictors(sce->predictor_state); + sce->ics.predictor_initialized = 1; + } + + if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { + for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]; sfb++) { + for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) { + predict(&sce->predictor_state[k], &sce->coeffs[k], + sce->ics.predictor_present && sce->ics.prediction_used[sfb]); + } + } + if (sce->ics.predictor_reset_group) + reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group); + } else + reset_all_predictors(sce->predictor_state); +} + +/** + * Decode an individual_channel_stream payload; reference: table 4.44. + * + * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information. + * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.) + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int decode_ics(AACContext *ac, SingleChannelElement *sce, + GetBitContext *gb, int common_window, int scale_flag) +{ + Pulse pulse; + TemporalNoiseShaping *tns = &sce->tns; + IndividualChannelStream *ics = &sce->ics; + float *out = sce->coeffs; + int global_gain, pulse_present = 0; + + /* This assignment is to silence a GCC warning about the variable being used + * uninitialized when in fact it always is. + */ + pulse.num_pulse = 0; + + global_gain = get_bits(gb, 8); + + if (!common_window && !scale_flag) { + if (decode_ics_info(ac, ics, gb) < 0) + return AVERROR_INVALIDDATA; + } + + if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0) + return -1; + if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0) + return -1; + + pulse_present = 0; + if (!scale_flag) { + if ((pulse_present = get_bits1(gb))) { + if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { + av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n"); + return -1; + } + if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) { + av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n"); + return -1; + } + } + if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics)) + return -1; + if (get_bits1(gb)) { + avpriv_request_sample(ac->avctx, "SSR"); + return AVERROR_PATCHWELCOME; + } + } + + if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0) + return -1; + + if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window) + apply_prediction(ac, sce); + + return 0; +} + +/** + * Mid/Side stereo decoding; reference: 4.6.8.1.3. + */ +static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe) +{ + const IndividualChannelStream *ics = &cpe->ch[0].ics; + float *ch0 = cpe->ch[0].coeffs; + float *ch1 = cpe->ch[1].coeffs; + int g, i, group, idx = 0; + const uint16_t *offsets = ics->swb_offset; + for (g = 0; g < ics->num_window_groups; g++) { + for (i = 0; i < ics->max_sfb; i++, idx++) { + if (cpe->ms_mask[idx] && + cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) { + for (group = 0; group < ics->group_len[g]; group++) { + ac->fdsp.butterflies_float(ch0 + group * 128 + offsets[i], + ch1 + group * 128 + offsets[i], + offsets[i+1] - offsets[i]); + } + } + } + ch0 += ics->group_len[g] * 128; + ch1 += ics->group_len[g] * 128; + } +} + +/** + * intensity stereo decoding; reference: 4.6.8.2.3 + * + * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; + * [1] mask is decoded from bitstream; [2] mask is all 1s; + * [3] reserved for scalable AAC + */ +static void apply_intensity_stereo(AACContext *ac, ChannelElement *cpe, int ms_present) +{ + const IndividualChannelStream *ics = &cpe->ch[1].ics; + SingleChannelElement *sce1 = &cpe->ch[1]; + float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs; + const uint16_t *offsets = ics->swb_offset; + int g, group, i, idx = 0; + int c; + float scale; + for (g = 0; g < ics->num_window_groups; g++) { + for (i = 0; i < ics->max_sfb;) { + if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) { + const int bt_run_end = sce1->band_type_run_end[idx]; + for (; i < bt_run_end; i++, idx++) { + c = -1 + 2 * (sce1->band_type[idx] - 14); + if (ms_present) + c *= 1 - 2 * cpe->ms_mask[idx]; + scale = c * sce1->sf[idx]; + for (group = 0; group < ics->group_len[g]; group++) + ac->fdsp.vector_fmul_scalar(coef1 + group * 128 + offsets[i], + coef0 + group * 128 + offsets[i], + scale, + offsets[i + 1] - offsets[i]); + } + } else { + int bt_run_end = sce1->band_type_run_end[idx]; + idx += bt_run_end - i; + i = bt_run_end; + } + } + coef0 += ics->group_len[g] * 128; + coef1 += ics->group_len[g] * 128; + } +} + +/** + * Decode a channel_pair_element; reference: table 4.4. + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe) +{ + int i, ret, common_window, ms_present = 0; + + common_window = get_bits1(gb); + if (common_window) { + if (decode_ics_info(ac, &cpe->ch[0].ics, gb)) + return AVERROR_INVALIDDATA; + i = cpe->ch[1].ics.use_kb_window[0]; + cpe->ch[1].ics = cpe->ch[0].ics; + cpe->ch[1].ics.use_kb_window[1] = i; + if (cpe->ch[1].ics.predictor_present && (ac->oc[1].m4ac.object_type != AOT_AAC_MAIN)) + if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1))) + decode_ltp(&cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb); + ms_present = get_bits(gb, 2); + if (ms_present == 3) { + av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n"); + return -1; + } else if (ms_present) + decode_mid_side_stereo(cpe, gb, ms_present); + } + if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0))) + return ret; + if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0))) + return ret; + + if (common_window) { + if (ms_present) + apply_mid_side_stereo(ac, cpe); + if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) { + apply_prediction(ac, &cpe->ch[0]); + apply_prediction(ac, &cpe->ch[1]); + } + } + + apply_intensity_stereo(ac, cpe, ms_present); + return 0; +} + +static const float cce_scale[] = { + 1.09050773266525765921, //2^(1/8) + 1.18920711500272106672, //2^(1/4) + M_SQRT2, + 2, +}; + +/** + * Decode coupling_channel_element; reference: table 4.8. + * + * @return Returns error status. 0 - OK, !0 - error + */ +static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che) +{ + int num_gain = 0; + int c, g, sfb, ret; + int sign; + float scale; + SingleChannelElement *sce = &che->ch[0]; + ChannelCoupling *coup = &che->coup; + + coup->coupling_point = 2 * get_bits1(gb); + coup->num_coupled = get_bits(gb, 3); + for (c = 0; c <= coup->num_coupled; c++) { + num_gain++; + coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE; + coup->id_select[c] = get_bits(gb, 4); + if (coup->type[c] == TYPE_CPE) { + coup->ch_select[c] = get_bits(gb, 2); + if (coup->ch_select[c] == 3) + num_gain++; + } else + coup->ch_select[c] = 2; + } + coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1); + + sign = get_bits(gb, 1); + scale = cce_scale[get_bits(gb, 2)]; + + if ((ret = decode_ics(ac, sce, gb, 0, 0))) + return ret; + + for (c = 0; c < num_gain; c++) { + int idx = 0; + int cge = 1; + int gain = 0; + float gain_cache = 1.; + if (c) { + cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb); + gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0; + gain_cache = powf(scale, -gain); + } + if (coup->coupling_point == AFTER_IMDCT) { + coup->gain[c][0] = gain_cache; + } else { + for (g = 0; g < sce->ics.num_window_groups; g++) { + for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) { + if (sce->band_type[idx] != ZERO_BT) { + if (!cge) { + int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; + if (t) { + int s = 1; + t = gain += t; + if (sign) { + s -= 2 * (t & 0x1); + t >>= 1; + } + gain_cache = powf(scale, -t) * s; + } + } + coup->gain[c][idx] = gain_cache; + } + } + } + } + } + return 0; +} + +/** + * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53. + * + * @return Returns number of bytes consumed. + */ +static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, + GetBitContext *gb) +{ + int i; + int num_excl_chan = 0; + + do { + for (i = 0; i < 7; i++) + che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb); + } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb)); + + return num_excl_chan / 7; +} + +/** + * Decode dynamic range information; reference: table 4.52. + * + * @return Returns number of bytes consumed. + */ +static int decode_dynamic_range(DynamicRangeControl *che_drc, + GetBitContext *gb) +{ + int n = 1; + int drc_num_bands = 1; + int i; + + /* pce_tag_present? */ + if (get_bits1(gb)) { + che_drc->pce_instance_tag = get_bits(gb, 4); + skip_bits(gb, 4); // tag_reserved_bits + n++; + } + + /* excluded_chns_present? */ + if (get_bits1(gb)) { + n += decode_drc_channel_exclusions(che_drc, gb); + } + + /* drc_bands_present? */ + if (get_bits1(gb)) { + che_drc->band_incr = get_bits(gb, 4); + che_drc->interpolation_scheme = get_bits(gb, 4); + n++; + drc_num_bands += che_drc->band_incr; + for (i = 0; i < drc_num_bands; i++) { + che_drc->band_top[i] = get_bits(gb, 8); + n++; + } + } + + /* prog_ref_level_present? */ + if (get_bits1(gb)) { + che_drc->prog_ref_level = get_bits(gb, 7); + skip_bits1(gb); // prog_ref_level_reserved_bits + n++; + } + + for (i = 0; i < drc_num_bands; i++) { + che_drc->dyn_rng_sgn[i] = get_bits1(gb); + che_drc->dyn_rng_ctl[i] = get_bits(gb, 7); + n++; + } + + return n; +} + +static int decode_fill(AACContext *ac, GetBitContext *gb, int len) { + uint8_t buf[256]; + int i, major, minor; + + if (len < 13+7*8) + goto unknown; + + get_bits(gb, 13); len -= 13; + + for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8) + buf[i] = get_bits(gb, 8); + + buf[i] = 0; + if (ac->avctx->debug & FF_DEBUG_PICT_INFO) + av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf); + + if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){ + ac->avctx->internal->skip_samples = 1024; + } + +unknown: + skip_bits_long(gb, len); + + return 0; +} + +/** + * Decode extension data (incomplete); reference: table 4.51. + * + * @param cnt length of TYPE_FIL syntactic element in bytes + * + * @return Returns number of bytes consumed + */ +static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt, + ChannelElement *che, enum RawDataBlockType elem_type) +{ + int crc_flag = 0; + int res = cnt; + switch (get_bits(gb, 4)) { // extension type + case EXT_SBR_DATA_CRC: + crc_flag++; + case EXT_SBR_DATA: + if (!che) { + av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n"); + return res; + } else if (!ac->oc[1].m4ac.sbr) { + av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n"); + skip_bits_long(gb, 8 * cnt - 4); + return res; + } else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) { + av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n"); + skip_bits_long(gb, 8 * cnt - 4); + return res; + } else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED && ac->avctx->channels == 1) { + ac->oc[1].m4ac.sbr = 1; + ac->oc[1].m4ac.ps = 1; + output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, + ac->oc[1].status, 1); + } else { + ac->oc[1].m4ac.sbr = 1; + } + res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type); + break; + case EXT_DYNAMIC_RANGE: + res = decode_dynamic_range(&ac->che_drc, gb); + break; + case EXT_FILL: + decode_fill(ac, gb, 8 * cnt - 4); + break; + case EXT_FILL_DATA: + case EXT_DATA_ELEMENT: + default: + skip_bits_long(gb, 8 * cnt - 4); + break; + }; + return res; +} + +/** + * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3. + * + * @param decode 1 if tool is used normally, 0 if tool is used in LTP. + * @param coef spectral coefficients + */ +static void apply_tns(float coef[1024], TemporalNoiseShaping *tns, + IndividualChannelStream *ics, int decode) +{ + const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); + int w, filt, m, i; + int bottom, top, order, start, end, size, inc; + float lpc[TNS_MAX_ORDER]; + float tmp[TNS_MAX_ORDER+1]; + + for (w = 0; w < ics->num_windows; w++) { + bottom = ics->num_swb; + for (filt = 0; filt < tns->n_filt[w]; filt++) { + top = bottom; + bottom = FFMAX(0, top - tns->length[w][filt]); + order = tns->order[w][filt]; + if (order == 0) + continue; + + // tns_decode_coef + compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0); + + start = ics->swb_offset[FFMIN(bottom, mmm)]; + end = ics->swb_offset[FFMIN( top, mmm)]; + if ((size = end - start) <= 0) + continue; + if (tns->direction[w][filt]) { + inc = -1; + start = end - 1; + } else { + inc = 1; + } + start += w * 128; + + if (decode) { + // ar filter + for (m = 0; m < size; m++, start += inc) + for (i = 1; i <= FFMIN(m, order); i++) + coef[start] -= coef[start - i * inc] * lpc[i - 1]; + } else { + // ma filter + for (m = 0; m < size; m++, start += inc) { + tmp[0] = coef[start]; + for (i = 1; i <= FFMIN(m, order); i++) + coef[start] += tmp[i] * lpc[i - 1]; + for (i = order; i > 0; i--) + tmp[i] = tmp[i - 1]; + } + } + } + } +} + +/** + * Apply windowing and MDCT to obtain the spectral + * coefficient from the predicted sample by LTP. + */ +static void windowing_and_mdct_ltp(AACContext *ac, float *out, + float *in, IndividualChannelStream *ics) +{ + const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024; + const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; + const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024; + const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128; + + if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) { + ac->fdsp.vector_fmul(in, in, lwindow_prev, 1024); + } else { + memset(in, 0, 448 * sizeof(float)); + ac->fdsp.vector_fmul(in + 448, in + 448, swindow_prev, 128); + } + if (ics->window_sequence[0] != LONG_START_SEQUENCE) { + ac->fdsp.vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024); + } else { + ac->fdsp.vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128); + memset(in + 1024 + 576, 0, 448 * sizeof(float)); + } + ac->mdct_ltp.mdct_calc(&ac->mdct_ltp, out, in); +} + +/** + * Apply the long term prediction + */ +static void apply_ltp(AACContext *ac, SingleChannelElement *sce) +{ + const LongTermPrediction *ltp = &sce->ics.ltp; + const uint16_t *offsets = sce->ics.swb_offset; + int i, sfb; + + if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { + float *predTime = sce->ret; + float *predFreq = ac->buf_mdct; + int16_t num_samples = 2048; + + if (ltp->lag < 1024) + num_samples = ltp->lag + 1024; + for (i = 0; i < num_samples; i++) + predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef; + memset(&predTime[i], 0, (2048 - i) * sizeof(float)); + + ac->windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics); + + if (sce->tns.present) + ac->apply_tns(predFreq, &sce->tns, &sce->ics, 0); + + for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) + if (ltp->used[sfb]) + for (i = offsets[sfb]; i < offsets[sfb + 1]; i++) + sce->coeffs[i] += predFreq[i]; + } +} + +/** + * Update the LTP buffer for next frame + */ +static void update_ltp(AACContext *ac, SingleChannelElement *sce) +{ + IndividualChannelStream *ics = &sce->ics; + float *saved = sce->saved; + float *saved_ltp = sce->coeffs; + const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024; + const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; + int i; + + if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { + memcpy(saved_ltp, saved, 512 * sizeof(float)); + memset(saved_ltp + 576, 0, 448 * sizeof(float)); + ac->fdsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64); + for (i = 0; i < 64; i++) + saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i]; + } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { + memcpy(saved_ltp, ac->buf_mdct + 512, 448 * sizeof(float)); + memset(saved_ltp + 576, 0, 448 * sizeof(float)); + ac->fdsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64); + for (i = 0; i < 64; i++) + saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i]; + } else { // LONG_STOP or ONLY_LONG + ac->fdsp.vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512); + for (i = 0; i < 512; i++) + saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * lwindow[511 - i]; + } + + memcpy(sce->ltp_state, sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state)); + memcpy(sce->ltp_state+1024, sce->ret, 1024 * sizeof(*sce->ltp_state)); + memcpy(sce->ltp_state+2048, saved_ltp, 1024 * sizeof(*sce->ltp_state)); +} + +/** + * Conduct IMDCT and windowing. + */ +static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce) +{ + IndividualChannelStream *ics = &sce->ics; + float *in = sce->coeffs; + float *out = sce->ret; + float *saved = sce->saved; + const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; + const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024; + const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128; + float *buf = ac->buf_mdct; + float *temp = ac->temp; + int i; + + // imdct + if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { + for (i = 0; i < 1024; i += 128) + ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i); + } else + ac->mdct.imdct_half(&ac->mdct, buf, in); + + /* window overlapping + * NOTE: To simplify the overlapping code, all 'meaningless' short to long + * and long to short transitions are considered to be short to short + * transitions. This leaves just two cases (long to long and short to short) + * with a little special sauce for EIGHT_SHORT_SEQUENCE. + */ + if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && + (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { + ac->fdsp.vector_fmul_window( out, saved, buf, lwindow_prev, 512); + } else { + memcpy( out, saved, 448 * sizeof(float)); + + if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { + ac->fdsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64); + ac->fdsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64); + ac->fdsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64); + ac->fdsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64); + ac->fdsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64); + memcpy( out + 448 + 4*128, temp, 64 * sizeof(float)); + } else { + ac->fdsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64); + memcpy( out + 576, buf + 64, 448 * sizeof(float)); + } + } + + // buffer update + if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { + memcpy( saved, temp + 64, 64 * sizeof(float)); + ac->fdsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64); + ac->fdsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64); + ac->fdsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64); + memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); + } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { + memcpy( saved, buf + 512, 448 * sizeof(float)); + memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); + } else { // LONG_STOP or ONLY_LONG + memcpy( saved, buf + 512, 512 * sizeof(float)); + } +} + +/** + * Apply dependent channel coupling (applied before IMDCT). + * + * @param index index into coupling gain array + */ +static void apply_dependent_coupling(AACContext *ac, + SingleChannelElement *target, + ChannelElement *cce, int index) +{ + IndividualChannelStream *ics = &cce->ch[0].ics; + const uint16_t *offsets = ics->swb_offset; + float *dest = target->coeffs; + const float *src = cce->ch[0].coeffs; + int g, i, group, k, idx = 0; + if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) { + av_log(ac->avctx, AV_LOG_ERROR, + "Dependent coupling is not supported together with LTP\n"); + return; + } + for (g = 0; g < ics->num_window_groups; g++) { + for (i = 0; i < ics->max_sfb; i++, idx++) { + if (cce->ch[0].band_type[idx] != ZERO_BT) { + const float gain = cce->coup.gain[index][idx]; + for (group = 0; group < ics->group_len[g]; group++) { + for (k = offsets[i]; k < offsets[i + 1]; k++) { + // XXX dsputil-ize + dest[group * 128 + k] += gain * src[group * 128 + k]; + } + } + } + } + dest += ics->group_len[g] * 128; + src += ics->group_len[g] * 128; + } +} + +/** + * Apply independent channel coupling (applied after IMDCT). + * + * @param index index into coupling gain array + */ +static void apply_independent_coupling(AACContext *ac, + SingleChannelElement *target, + ChannelElement *cce, int index) +{ + int i; + const float gain = cce->coup.gain[index][0]; + const float *src = cce->ch[0].ret; + float *dest = target->ret; + const int len = 1024 << (ac->oc[1].m4ac.sbr == 1); + + for (i = 0; i < len; i++) + dest[i] += gain * src[i]; +} + +/** + * channel coupling transformation interface + * + * @param apply_coupling_method pointer to (in)dependent coupling function + */ +static void apply_channel_coupling(AACContext *ac, ChannelElement *cc, + enum RawDataBlockType type, int elem_id, + enum CouplingPoint coupling_point, + void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index)) +{ + int i, c; + + for (i = 0; i < MAX_ELEM_ID; i++) { + ChannelElement *cce = ac->che[TYPE_CCE][i]; + int index = 0; + + if (cce && cce->coup.coupling_point == coupling_point) { + ChannelCoupling *coup = &cce->coup; + + for (c = 0; c <= coup->num_coupled; c++) { + if (coup->type[c] == type && coup->id_select[c] == elem_id) { + if (coup->ch_select[c] != 1) { + apply_coupling_method(ac, &cc->ch[0], cce, index); + if (coup->ch_select[c] != 0) + index++; + } + if (coup->ch_select[c] != 2) + apply_coupling_method(ac, &cc->ch[1], cce, index++); + } else + index += 1 + (coup->ch_select[c] == 3); + } + } + } +} + +/** + * Convert spectral data to float samples, applying all supported tools as appropriate. + */ +static void spectral_to_sample(AACContext *ac) +{ + int i, type; + for (type = 3; type >= 0; type--) { + for (i = 0; i < MAX_ELEM_ID; i++) { + ChannelElement *che = ac->che[type][i]; + if (che) { + if (type <= TYPE_CPE) + apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling); + if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) { + if (che->ch[0].ics.predictor_present) { + if (che->ch[0].ics.ltp.present) + ac->apply_ltp(ac, &che->ch[0]); + if (che->ch[1].ics.ltp.present && type == TYPE_CPE) + ac->apply_ltp(ac, &che->ch[1]); + } + } + if (che->ch[0].tns.present) + ac->apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1); + if (che->ch[1].tns.present) + ac->apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1); + if (type <= TYPE_CPE) + apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling); + if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) { + ac->imdct_and_windowing(ac, &che->ch[0]); + if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) + ac->update_ltp(ac, &che->ch[0]); + if (type == TYPE_CPE) { + ac->imdct_and_windowing(ac, &che->ch[1]); + if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) + ac->update_ltp(ac, &che->ch[1]); + } + if (ac->oc[1].m4ac.sbr > 0) { + ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret); + } + } + if (type <= TYPE_CCE) + apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling); + } + } + } +} + +static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb) +{ + int size; + AACADTSHeaderInfo hdr_info; + uint8_t layout_map[MAX_ELEM_ID*4][3]; + int layout_map_tags; + + size = avpriv_aac_parse_header(gb, &hdr_info); + if (size > 0) { + if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) { + // This is 2 for "VLB " audio in NSV files. + // See samples/nsv/vlb_audio. + avpriv_report_missing_feature(ac->avctx, + "More than one AAC RDB per ADTS frame"); + ac->warned_num_aac_frames = 1; + } + push_output_configuration(ac); + if (hdr_info.chan_config) { + ac->oc[1].m4ac.chan_config = hdr_info.chan_config; + if (set_default_channel_config(ac->avctx, layout_map, + &layout_map_tags, hdr_info.chan_config)) + return -7; + if (output_configure(ac, layout_map, layout_map_tags, + FFMAX(ac->oc[1].status, OC_TRIAL_FRAME), 0)) + return -7; + } else { + ac->oc[1].m4ac.chan_config = 0; + /** + * dual mono frames in Japanese DTV can have chan_config 0 + * WITHOUT specifying PCE. + * thus, set dual mono as default. + */ + if (ac->dmono_mode && ac->oc[0].status == OC_NONE) { + layout_map_tags = 2; + layout_map[0][0] = layout_map[1][0] = TYPE_SCE; + layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT; + layout_map[0][1] = 0; + layout_map[1][1] = 1; + if (output_configure(ac, layout_map, layout_map_tags, + OC_TRIAL_FRAME, 0)) + return -7; + } + } + ac->oc[1].m4ac.sample_rate = hdr_info.sample_rate; + ac->oc[1].m4ac.sampling_index = hdr_info.sampling_index; + ac->oc[1].m4ac.object_type = hdr_info.object_type; + if (ac->oc[0].status != OC_LOCKED || + ac->oc[0].m4ac.chan_config != hdr_info.chan_config || + ac->oc[0].m4ac.sample_rate != hdr_info.sample_rate) { + ac->oc[1].m4ac.sbr = -1; + ac->oc[1].m4ac.ps = -1; + } + if (!hdr_info.crc_absent) + skip_bits(gb, 16); + } + return size; +} + +static int aac_decode_frame_int(AVCodecContext *avctx, void *data, + int *got_frame_ptr, GetBitContext *gb, AVPacket *avpkt) +{ + AACContext *ac = avctx->priv_data; + ChannelElement *che = NULL, *che_prev = NULL; + enum RawDataBlockType elem_type, elem_type_prev = TYPE_END; + int err, elem_id; + int samples = 0, multiplier, audio_found = 0, pce_found = 0; + int is_dmono, sce_count = 0; + + ac->frame = data; + + if (show_bits(gb, 12) == 0xfff) { + if (parse_adts_frame_header(ac, gb) < 0) { + av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n"); + err = -1; + goto fail; + } + if (ac->oc[1].m4ac.sampling_index > 12) { + av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index); + err = -1; + goto fail; + } + } + + if (frame_configure_elements(avctx) < 0) { + err = -1; + goto fail; + } + + ac->tags_mapped = 0; + // parse + while ((elem_type = get_bits(gb, 3)) != TYPE_END) { + elem_id = get_bits(gb, 4); + + if (elem_type < TYPE_DSE) { + if (!(che=get_che(ac, elem_type, elem_id))) { + av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", + elem_type, elem_id); + err = -1; + goto fail; + } + samples = 1024; + } + + switch (elem_type) { + + case TYPE_SCE: + err = decode_ics(ac, &che->ch[0], gb, 0, 0); + audio_found = 1; + sce_count++; + break; + + case TYPE_CPE: + err = decode_cpe(ac, gb, che); + audio_found = 1; + break; + + case TYPE_CCE: + err = decode_cce(ac, gb, che); + break; + + case TYPE_LFE: + err = decode_ics(ac, &che->ch[0], gb, 0, 0); + audio_found = 1; + break; + + case TYPE_DSE: + err = skip_data_stream_element(ac, gb); + break; + + case TYPE_PCE: { + uint8_t layout_map[MAX_ELEM_ID*4][3]; + int tags; + push_output_configuration(ac); + tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb); + if (tags < 0) { + err = tags; + break; + } + if (pce_found) { + av_log(avctx, AV_LOG_ERROR, + "Not evaluating a further program_config_element as this construct is dubious at best.\n"); + } else { + err = output_configure(ac, layout_map, tags, OC_TRIAL_PCE, 1); + if (!err) + ac->oc[1].m4ac.chan_config = 0; + pce_found = 1; + } + break; + } + + case TYPE_FIL: + if (elem_id == 15) + elem_id += get_bits(gb, 8) - 1; + if (get_bits_left(gb) < 8 * elem_id) { + av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err); + err = -1; + goto fail; + } + while (elem_id > 0) + elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev); + err = 0; /* FIXME */ + break; + + default: + err = -1; /* should not happen, but keeps compiler happy */ + break; + } + + che_prev = che; + elem_type_prev = elem_type; + + if (err) + goto fail; + + if (get_bits_left(gb) < 3) { + av_log(avctx, AV_LOG_ERROR, overread_err); + err = -1; + goto fail; + } + } + + spectral_to_sample(ac); + + multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0; + samples <<= multiplier; + /* for dual-mono audio (SCE + SCE) */ + is_dmono = ac->dmono_mode && sce_count == 2 && + ac->oc[1].channel_layout == (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT); + + if (samples) + ac->frame->nb_samples = samples; + *got_frame_ptr = !!samples; + + if (is_dmono) { + if (ac->dmono_mode == 1) + ((AVFrame *)data)->data[1] =((AVFrame *)data)->data[0]; + else if (ac->dmono_mode == 2) + ((AVFrame *)data)->data[0] =((AVFrame *)data)->data[1]; + } + + if (ac->oc[1].status && audio_found) { + avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier; + avctx->frame_size = samples; + ac->oc[1].status = OC_LOCKED; + } + + if (multiplier) { + int side_size; + const uint8_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, &side_size); + if (side && side_size>=4) + AV_WL32(side, 2*AV_RL32(side)); + } + return 0; +fail: + pop_output_configuration(ac); + return err; +} + +static int aac_decode_frame(AVCodecContext *avctx, void *data, + int *got_frame_ptr, AVPacket *avpkt) +{ + AACContext *ac = avctx->priv_data; + const uint8_t *buf = avpkt->data; + int buf_size = avpkt->size; + GetBitContext gb; + int buf_consumed; + int buf_offset; + int err; + int new_extradata_size; + const uint8_t *new_extradata = av_packet_get_side_data(avpkt, + AV_PKT_DATA_NEW_EXTRADATA, + &new_extradata_size); + int jp_dualmono_size; + const uint8_t *jp_dualmono = av_packet_get_side_data(avpkt, + AV_PKT_DATA_JP_DUALMONO, + &jp_dualmono_size); + + if (new_extradata && 0) { + av_free(avctx->extradata); + avctx->extradata = av_mallocz(new_extradata_size + + FF_INPUT_BUFFER_PADDING_SIZE); + if (!avctx->extradata) + return AVERROR(ENOMEM); + avctx->extradata_size = new_extradata_size; + memcpy(avctx->extradata, new_extradata, new_extradata_size); + push_output_configuration(ac); + if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac, + avctx->extradata, + avctx->extradata_size*8, 1) < 0) { + pop_output_configuration(ac); + return AVERROR_INVALIDDATA; + } + } + + ac->dmono_mode = 0; + if (jp_dualmono && jp_dualmono_size > 0) + ac->dmono_mode = 1 + *jp_dualmono; + if (ac->force_dmono_mode >= 0) + ac->dmono_mode = ac->force_dmono_mode; + + if (INT_MAX / 8 <= buf_size) + return AVERROR_INVALIDDATA; + + init_get_bits(&gb, buf, buf_size * 8); + + if ((err = aac_decode_frame_int(avctx, data, got_frame_ptr, &gb, avpkt)) < 0) + return err; + + buf_consumed = (get_bits_count(&gb) + 7) >> 3; + for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++) + if (buf[buf_offset]) + break; + + return buf_size > buf_offset ? buf_consumed : buf_size; +} + +static av_cold int aac_decode_close(AVCodecContext *avctx) +{ + AACContext *ac = avctx->priv_data; + int i, type; + + for (i = 0; i < MAX_ELEM_ID; i++) { + for (type = 0; type < 4; type++) { + if (ac->che[type][i]) + ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr); + av_freep(&ac->che[type][i]); + } + } + + ff_mdct_end(&ac->mdct); + ff_mdct_end(&ac->mdct_small); + ff_mdct_end(&ac->mdct_ltp); + return 0; +} + + +#define LOAS_SYNC_WORD 0x2b7 ///< 11 bits LOAS sync word + +struct LATMContext { + AACContext aac_ctx; ///< containing AACContext + int initialized; ///< initialized after a valid extradata was seen + + // parser data + int audio_mux_version_A; ///< LATM syntax version + int frame_length_type; ///< 0/1 variable/fixed frame length + int frame_length; ///< frame length for fixed frame length +}; + +static inline uint32_t latm_get_value(GetBitContext *b) +{ + int length = get_bits(b, 2); + + return get_bits_long(b, (length+1)*8); +} + +static int latm_decode_audio_specific_config(struct LATMContext *latmctx, + GetBitContext *gb, int asclen) +{ + AACContext *ac = &latmctx->aac_ctx; + AVCodecContext *avctx = ac->avctx; + MPEG4AudioConfig m4ac = { 0 }; + int config_start_bit = get_bits_count(gb); + int sync_extension = 0; + int bits_consumed, esize; + + if (asclen) { + sync_extension = 1; + asclen = FFMIN(asclen, get_bits_left(gb)); + } else + asclen = get_bits_left(gb); + + if (config_start_bit % 8) { + avpriv_request_sample(latmctx->aac_ctx.avctx, + "Non-byte-aligned audio-specific config"); + return AVERROR_PATCHWELCOME; + } + if (asclen <= 0) + return AVERROR_INVALIDDATA; + bits_consumed = decode_audio_specific_config(NULL, avctx, &m4ac, + gb->buffer + (config_start_bit / 8), + asclen, sync_extension); + + if (bits_consumed < 0) + return AVERROR_INVALIDDATA; + + if (!latmctx->initialized || + ac->oc[1].m4ac.sample_rate != m4ac.sample_rate || + ac->oc[1].m4ac.chan_config != m4ac.chan_config) { + + if(latmctx->initialized) { + av_log(avctx, AV_LOG_INFO, "audio config changed\n"); + } else { + av_log(avctx, AV_LOG_DEBUG, "initializing latmctx\n"); + } + latmctx->initialized = 0; + + esize = (bits_consumed+7) / 8; + + if (avctx->extradata_size < esize) { + av_free(avctx->extradata); + avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE); + if (!avctx->extradata) + return AVERROR(ENOMEM); + } + + avctx->extradata_size = esize; + memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize); + memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE); + } + skip_bits_long(gb, bits_consumed); + + return bits_consumed; +} + +static int read_stream_mux_config(struct LATMContext *latmctx, + GetBitContext *gb) +{ + int ret, audio_mux_version = get_bits(gb, 1); + + latmctx->audio_mux_version_A = 0; + if (audio_mux_version) + latmctx->audio_mux_version_A = get_bits(gb, 1); + + if (!latmctx->audio_mux_version_A) { + + if (audio_mux_version) + latm_get_value(gb); // taraFullness + + skip_bits(gb, 1); // allStreamSameTimeFraming + skip_bits(gb, 6); // numSubFrames + // numPrograms + if (get_bits(gb, 4)) { // numPrograms + avpriv_request_sample(latmctx->aac_ctx.avctx, "Multiple programs"); + return AVERROR_PATCHWELCOME; + } + + // for each program (which there is only one in DVB) + + // for each layer (which there is only one in DVB) + if (get_bits(gb, 3)) { // numLayer + avpriv_request_sample(latmctx->aac_ctx.avctx, "Multiple layers"); + return AVERROR_PATCHWELCOME; + } + + // for all but first stream: use_same_config = get_bits(gb, 1); + if (!audio_mux_version) { + if ((ret = latm_decode_audio_specific_config(latmctx, gb, 0)) < 0) + return ret; + } else { + int ascLen = latm_get_value(gb); + if ((ret = latm_decode_audio_specific_config(latmctx, gb, ascLen)) < 0) + return ret; + ascLen -= ret; + skip_bits_long(gb, ascLen); + } + + latmctx->frame_length_type = get_bits(gb, 3); + switch (latmctx->frame_length_type) { + case 0: + skip_bits(gb, 8); // latmBufferFullness + break; + case 1: + latmctx->frame_length = get_bits(gb, 9); + break; + case 3: + case 4: + case 5: + skip_bits(gb, 6); // CELP frame length table index + break; + case 6: + case 7: + skip_bits(gb, 1); // HVXC frame length table index + break; + } + + if (get_bits(gb, 1)) { // other data + if (audio_mux_version) { + latm_get_value(gb); // other_data_bits + } else { + int esc; + do { + esc = get_bits(gb, 1); + skip_bits(gb, 8); + } while (esc); + } + } + + if (get_bits(gb, 1)) // crc present + skip_bits(gb, 8); // config_crc + } + + return 0; +} + +static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb) +{ + uint8_t tmp; + + if (ctx->frame_length_type == 0) { + int mux_slot_length = 0; + do { + tmp = get_bits(gb, 8); + mux_slot_length += tmp; + } while (tmp == 255); + return mux_slot_length; + } else if (ctx->frame_length_type == 1) { + return ctx->frame_length; + } else if (ctx->frame_length_type == 3 || + ctx->frame_length_type == 5 || + ctx->frame_length_type == 7) { + skip_bits(gb, 2); // mux_slot_length_coded + } + return 0; +} + +static int read_audio_mux_element(struct LATMContext *latmctx, + GetBitContext *gb) +{ + int err; + uint8_t use_same_mux = get_bits(gb, 1); + if (!use_same_mux) { + if ((err = read_stream_mux_config(latmctx, gb)) < 0) + return err; + } else if (!latmctx->aac_ctx.avctx->extradata) { + av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG, + "no decoder config found\n"); + return AVERROR(EAGAIN); + } + if (latmctx->audio_mux_version_A == 0) { + int mux_slot_length_bytes = read_payload_length_info(latmctx, gb); + if (mux_slot_length_bytes * 8 > get_bits_left(gb)) { + av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n"); + return AVERROR_INVALIDDATA; + } else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) { + av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, + "frame length mismatch %d << %d\n", + mux_slot_length_bytes * 8, get_bits_left(gb)); + return AVERROR_INVALIDDATA; + } + } + return 0; +} + + +static int latm_decode_frame(AVCodecContext *avctx, void *out, + int *got_frame_ptr, AVPacket *avpkt) +{ + struct LATMContext *latmctx = avctx->priv_data; + int muxlength, err; + GetBitContext gb; + + if ((err = init_get_bits8(&gb, avpkt->data, avpkt->size)) < 0) + return err; + + // check for LOAS sync word + if (get_bits(&gb, 11) != LOAS_SYNC_WORD) + return AVERROR_INVALIDDATA; + + muxlength = get_bits(&gb, 13) + 3; + // not enough data, the parser should have sorted this out + if (muxlength > avpkt->size) + return AVERROR_INVALIDDATA; + + if ((err = read_audio_mux_element(latmctx, &gb)) < 0) + return err; + + if (!latmctx->initialized) { + if (!avctx->extradata) { + *got_frame_ptr = 0; + return avpkt->size; + } else { + push_output_configuration(&latmctx->aac_ctx); + if ((err = decode_audio_specific_config( + &latmctx->aac_ctx, avctx, &latmctx->aac_ctx.oc[1].m4ac, + avctx->extradata, avctx->extradata_size*8, 1)) < 0) { + pop_output_configuration(&latmctx->aac_ctx); + return err; + } + latmctx->initialized = 1; + } + } + + if (show_bits(&gb, 12) == 0xfff) { + av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, + "ADTS header detected, probably as result of configuration " + "misparsing\n"); + return AVERROR_INVALIDDATA; + } + + if ((err = aac_decode_frame_int(avctx, out, got_frame_ptr, &gb, avpkt)) < 0) + return err; + + return muxlength; +} + +static av_cold int latm_decode_init(AVCodecContext *avctx) +{ + struct LATMContext *latmctx = avctx->priv_data; + int ret = aac_decode_init(avctx); + + if (avctx->extradata_size > 0) + latmctx->initialized = !ret; + + return ret; +} + +static void aacdec_init(AACContext *c) +{ + c->imdct_and_windowing = imdct_and_windowing; + c->apply_ltp = apply_ltp; + c->apply_tns = apply_tns; + c->windowing_and_mdct_ltp = windowing_and_mdct_ltp; + c->update_ltp = update_ltp; + + if(ARCH_MIPS) + ff_aacdec_init_mips(c); +} +/** + * AVOptions for Japanese DTV specific extensions (ADTS only) + */ +#define AACDEC_FLAGS AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM +static const AVOption options[] = { + {"dual_mono_mode", "Select the channel to decode for dual mono", + offsetof(AACContext, force_dmono_mode), AV_OPT_TYPE_INT, {.i64=-1}, -1, 2, + AACDEC_FLAGS, "dual_mono_mode"}, + + {"auto", "autoselection", 0, AV_OPT_TYPE_CONST, {.i64=-1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, + {"main", "Select Main/Left channel", 0, AV_OPT_TYPE_CONST, {.i64= 1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, + {"sub" , "Select Sub/Right channel", 0, AV_OPT_TYPE_CONST, {.i64= 2}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, + {"both", "Select both channels", 0, AV_OPT_TYPE_CONST, {.i64= 0}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, + + {NULL}, +}; + +static const AVClass aac_decoder_class = { + .class_name = "AAC decoder", + .item_name = av_default_item_name, + .option = options, + .version = LIBAVUTIL_VERSION_INT, +}; + +AVCodec ff_aac_decoder = { + .name = "aac", + .type = AVMEDIA_TYPE_AUDIO, + .id = AV_CODEC_ID_AAC, + .priv_data_size = sizeof(AACContext), + .init = aac_decode_init, + .close = aac_decode_close, + .decode = aac_decode_frame, + .long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"), + .sample_fmts = (const enum AVSampleFormat[]) { + AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE + }, + .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1, + .channel_layouts = aac_channel_layout, + .flush = flush, + .priv_class = &aac_decoder_class, +}; + +/* + Note: This decoder filter is intended to decode LATM streams transferred + in MPEG transport streams which only contain one program. + To do a more complex LATM demuxing a separate LATM demuxer should be used. +*/ +AVCodec ff_aac_latm_decoder = { + .name = "aac_latm", + .type = AVMEDIA_TYPE_AUDIO, + .id = AV_CODEC_ID_AAC_LATM, + .priv_data_size = sizeof(struct LATMContext), + .init = latm_decode_init, + .close = aac_decode_close, + .decode = latm_decode_frame, + .long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Coding LATM syntax)"), + .sample_fmts = (const enum AVSampleFormat[]) { + AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE + }, + .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1, + .channel_layouts = aac_channel_layout, + .flush = flush, +}; |
