diff options
| author | Tim Redfern <tim@eclectronics.org> | 2014-02-17 13:36:38 +0000 |
|---|---|---|
| committer | Tim Redfern <tim@eclectronics.org> | 2014-02-17 13:36:38 +0000 |
| commit | 22e28216336da876e1fd17f380ce42eaf1446769 (patch) | |
| tree | 444dad3dc7e2656992d29f34f7bce31970c122a5 /ffmpeg/libavcodec/g723_1.c | |
| parent | ae5e8541f6e06e64c28719467cdf366ac57aff31 (diff) | |
chasing indexing error
Diffstat (limited to 'ffmpeg/libavcodec/g723_1.c')
| -rw-r--r-- | ffmpeg/libavcodec/g723_1.c | 2477 |
1 files changed, 0 insertions, 2477 deletions
diff --git a/ffmpeg/libavcodec/g723_1.c b/ffmpeg/libavcodec/g723_1.c deleted file mode 100644 index 09da766..0000000 --- a/ffmpeg/libavcodec/g723_1.c +++ /dev/null @@ -1,2477 +0,0 @@ -/* - * G.723.1 compatible decoder - * Copyright (c) 2006 Benjamin Larsson - * Copyright (c) 2010 Mohamed Naufal Basheer - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * G.723.1 compatible decoder - */ - -#define BITSTREAM_READER_LE -#include "libavutil/channel_layout.h" -#include "libavutil/mem.h" -#include "libavutil/opt.h" -#include "avcodec.h" -#include "get_bits.h" -#include "acelp_vectors.h" -#include "celp_filters.h" -#include "celp_math.h" -#include "g723_1_data.h" -#include "internal.h" - -#define CNG_RANDOM_SEED 12345 - -typedef struct g723_1_context { - AVClass *class; - - G723_1_Subframe subframe[4]; - enum FrameType cur_frame_type; - enum FrameType past_frame_type; - enum Rate cur_rate; - uint8_t lsp_index[LSP_BANDS]; - int pitch_lag[2]; - int erased_frames; - - int16_t prev_lsp[LPC_ORDER]; - int16_t sid_lsp[LPC_ORDER]; - int16_t prev_excitation[PITCH_MAX]; - int16_t excitation[PITCH_MAX + FRAME_LEN + 4]; - int16_t synth_mem[LPC_ORDER]; - int16_t fir_mem[LPC_ORDER]; - int iir_mem[LPC_ORDER]; - - int random_seed; - int cng_random_seed; - int interp_index; - int interp_gain; - int sid_gain; - int cur_gain; - int reflection_coef; - int pf_gain; ///< formant postfilter - ///< gain scaling unit memory - int postfilter; - - int16_t audio[FRAME_LEN + LPC_ORDER + PITCH_MAX + 4]; - int16_t prev_data[HALF_FRAME_LEN]; - int16_t prev_weight_sig[PITCH_MAX]; - - - int16_t hpf_fir_mem; ///< highpass filter fir - int hpf_iir_mem; ///< and iir memories - int16_t perf_fir_mem[LPC_ORDER]; ///< perceptual filter fir - int16_t perf_iir_mem[LPC_ORDER]; ///< and iir memories - - int16_t harmonic_mem[PITCH_MAX]; -} G723_1_Context; - -static av_cold int g723_1_decode_init(AVCodecContext *avctx) -{ - G723_1_Context *p = avctx->priv_data; - - avctx->channel_layout = AV_CH_LAYOUT_MONO; - avctx->sample_fmt = AV_SAMPLE_FMT_S16; - avctx->channels = 1; - p->pf_gain = 1 << 12; - - memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(*p->prev_lsp)); - memcpy(p->sid_lsp, dc_lsp, LPC_ORDER * sizeof(*p->sid_lsp)); - - p->cng_random_seed = CNG_RANDOM_SEED; - p->past_frame_type = SID_FRAME; - - return 0; -} - -/** - * Unpack the frame into parameters. - * - * @param p the context - * @param buf pointer to the input buffer - * @param buf_size size of the input buffer - */ -static int unpack_bitstream(G723_1_Context *p, const uint8_t *buf, - int buf_size) -{ - GetBitContext gb; - int ad_cb_len; - int temp, info_bits, i; - - init_get_bits(&gb, buf, buf_size * 8); - - /* Extract frame type and rate info */ - info_bits = get_bits(&gb, 2); - - if (info_bits == 3) { - p->cur_frame_type = UNTRANSMITTED_FRAME; - return 0; - } - - /* Extract 24 bit lsp indices, 8 bit for each band */ - p->lsp_index[2] = get_bits(&gb, 8); - p->lsp_index[1] = get_bits(&gb, 8); - p->lsp_index[0] = get_bits(&gb, 8); - - if (info_bits == 2) { - p->cur_frame_type = SID_FRAME; - p->subframe[0].amp_index = get_bits(&gb, 6); - return 0; - } - - /* Extract the info common to both rates */ - p->cur_rate = info_bits ? RATE_5300 : RATE_6300; - p->cur_frame_type = ACTIVE_FRAME; - - p->pitch_lag[0] = get_bits(&gb, 7); - if (p->pitch_lag[0] > 123) /* test if forbidden code */ - return -1; - p->pitch_lag[0] += PITCH_MIN; - p->subframe[1].ad_cb_lag = get_bits(&gb, 2); - - p->pitch_lag[1] = get_bits(&gb, 7); - if (p->pitch_lag[1] > 123) - return -1; - p->pitch_lag[1] += PITCH_MIN; - p->subframe[3].ad_cb_lag = get_bits(&gb, 2); - p->subframe[0].ad_cb_lag = 1; - p->subframe[2].ad_cb_lag = 1; - - for (i = 0; i < SUBFRAMES; i++) { - /* Extract combined gain */ - temp = get_bits(&gb, 12); - ad_cb_len = 170; - p->subframe[i].dirac_train = 0; - if (p->cur_rate == RATE_6300 && p->pitch_lag[i >> 1] < SUBFRAME_LEN - 2) { - p->subframe[i].dirac_train = temp >> 11; - temp &= 0x7FF; - ad_cb_len = 85; - } - p->subframe[i].ad_cb_gain = FASTDIV(temp, GAIN_LEVELS); - if (p->subframe[i].ad_cb_gain < ad_cb_len) { - p->subframe[i].amp_index = temp - p->subframe[i].ad_cb_gain * - GAIN_LEVELS; - } else { - return -1; - } - } - - p->subframe[0].grid_index = get_bits1(&gb); - p->subframe[1].grid_index = get_bits1(&gb); - p->subframe[2].grid_index = get_bits1(&gb); - p->subframe[3].grid_index = get_bits1(&gb); - - if (p->cur_rate == RATE_6300) { - skip_bits1(&gb); /* skip reserved bit */ - - /* Compute pulse_pos index using the 13-bit combined position index */ - temp = get_bits(&gb, 13); - p->subframe[0].pulse_pos = temp / 810; - - temp -= p->subframe[0].pulse_pos * 810; - p->subframe[1].pulse_pos = FASTDIV(temp, 90); - - temp -= p->subframe[1].pulse_pos * 90; - p->subframe[2].pulse_pos = FASTDIV(temp, 9); - p->subframe[3].pulse_pos = temp - p->subframe[2].pulse_pos * 9; - - p->subframe[0].pulse_pos = (p->subframe[0].pulse_pos << 16) + - get_bits(&gb, 16); - p->subframe[1].pulse_pos = (p->subframe[1].pulse_pos << 14) + - get_bits(&gb, 14); - p->subframe[2].pulse_pos = (p->subframe[2].pulse_pos << 16) + - get_bits(&gb, 16); - p->subframe[3].pulse_pos = (p->subframe[3].pulse_pos << 14) + - get_bits(&gb, 14); - - p->subframe[0].pulse_sign = get_bits(&gb, 6); - p->subframe[1].pulse_sign = get_bits(&gb, 5); - p->subframe[2].pulse_sign = get_bits(&gb, 6); - p->subframe[3].pulse_sign = get_bits(&gb, 5); - } else { /* 5300 bps */ - p->subframe[0].pulse_pos = get_bits(&gb, 12); - p->subframe[1].pulse_pos = get_bits(&gb, 12); - p->subframe[2].pulse_pos = get_bits(&gb, 12); - p->subframe[3].pulse_pos = get_bits(&gb, 12); - - p->subframe[0].pulse_sign = get_bits(&gb, 4); - p->subframe[1].pulse_sign = get_bits(&gb, 4); - p->subframe[2].pulse_sign = get_bits(&gb, 4); - p->subframe[3].pulse_sign = get_bits(&gb, 4); - } - - return 0; -} - -/** - * Bitexact implementation of sqrt(val/2). - */ -static int16_t square_root(unsigned val) -{ - av_assert2(!(val & 0x80000000)); - - return (ff_sqrt(val << 1) >> 1) & (~1); -} - -/** - * Calculate the number of left-shifts required for normalizing the input. - * - * @param num input number - * @param width width of the input, 15 or 31 bits - */ -static int normalize_bits(int num, int width) -{ - return width - av_log2(num) - 1; -} - -#define normalize_bits_int16(num) normalize_bits(num, 15) -#define normalize_bits_int32(num) normalize_bits(num, 31) - -/** - * Scale vector contents based on the largest of their absolutes. - */ -static int scale_vector(int16_t *dst, const int16_t *vector, int length) -{ - int bits, max = 0; - int i; - - for (i = 0; i < length; i++) - max |= FFABS(vector[i]); - - bits= 14 - av_log2_16bit(max); - bits= FFMAX(bits, 0); - - for (i = 0; i < length; i++) - dst[i] = vector[i] << bits >> 3; - - return bits - 3; -} - -/** - * Perform inverse quantization of LSP frequencies. - * - * @param cur_lsp the current LSP vector - * @param prev_lsp the previous LSP vector - * @param lsp_index VQ indices - * @param bad_frame bad frame flag - */ -static void inverse_quant(int16_t *cur_lsp, int16_t *prev_lsp, - uint8_t *lsp_index, int bad_frame) -{ - int min_dist, pred; - int i, j, temp, stable; - - /* Check for frame erasure */ - if (!bad_frame) { - min_dist = 0x100; - pred = 12288; - } else { - min_dist = 0x200; - pred = 23552; - lsp_index[0] = lsp_index[1] = lsp_index[2] = 0; - } - - /* Get the VQ table entry corresponding to the transmitted index */ - cur_lsp[0] = lsp_band0[lsp_index[0]][0]; - cur_lsp[1] = lsp_band0[lsp_index[0]][1]; - cur_lsp[2] = lsp_band0[lsp_index[0]][2]; - cur_lsp[3] = lsp_band1[lsp_index[1]][0]; - cur_lsp[4] = lsp_band1[lsp_index[1]][1]; - cur_lsp[5] = lsp_band1[lsp_index[1]][2]; - cur_lsp[6] = lsp_band2[lsp_index[2]][0]; - cur_lsp[7] = lsp_band2[lsp_index[2]][1]; - cur_lsp[8] = lsp_band2[lsp_index[2]][2]; - cur_lsp[9] = lsp_band2[lsp_index[2]][3]; - - /* Add predicted vector & DC component to the previously quantized vector */ - for (i = 0; i < LPC_ORDER; i++) { - temp = ((prev_lsp[i] - dc_lsp[i]) * pred + (1 << 14)) >> 15; - cur_lsp[i] += dc_lsp[i] + temp; - } - - for (i = 0; i < LPC_ORDER; i++) { - cur_lsp[0] = FFMAX(cur_lsp[0], 0x180); - cur_lsp[LPC_ORDER - 1] = FFMIN(cur_lsp[LPC_ORDER - 1], 0x7e00); - - /* Stability check */ - for (j = 1; j < LPC_ORDER; j++) { - temp = min_dist + cur_lsp[j - 1] - cur_lsp[j]; - if (temp > 0) { - temp >>= 1; - cur_lsp[j - 1] -= temp; - cur_lsp[j] += temp; - } - } - stable = 1; - for (j = 1; j < LPC_ORDER; j++) { - temp = cur_lsp[j - 1] + min_dist - cur_lsp[j] - 4; - if (temp > 0) { - stable = 0; - break; - } - } - if (stable) - break; - } - if (!stable) - memcpy(cur_lsp, prev_lsp, LPC_ORDER * sizeof(*cur_lsp)); -} - -/** - * Bitexact implementation of 2ab scaled by 1/2^16. - * - * @param a 32 bit multiplicand - * @param b 16 bit multiplier - */ -#define MULL2(a, b) \ - MULL(a,b,15) - -/** - * Convert LSP frequencies to LPC coefficients. - * - * @param lpc buffer for LPC coefficients - */ -static void lsp2lpc(int16_t *lpc) -{ - int f1[LPC_ORDER / 2 + 1]; - int f2[LPC_ORDER / 2 + 1]; - int i, j; - - /* Calculate negative cosine */ - for (j = 0; j < LPC_ORDER; j++) { - int index = (lpc[j] >> 7) & 0x1FF; - int offset = lpc[j] & 0x7f; - int temp1 = cos_tab[index] << 16; - int temp2 = (cos_tab[index + 1] - cos_tab[index]) * - ((offset << 8) + 0x80) << 1; - - lpc[j] = -(av_sat_dadd32(1 << 15, temp1 + temp2) >> 16); - } - - /* - * Compute sum and difference polynomial coefficients - * (bitexact alternative to lsp2poly() in lsp.c) - */ - /* Initialize with values in Q28 */ - f1[0] = 1 << 28; - f1[1] = (lpc[0] << 14) + (lpc[2] << 14); - f1[2] = lpc[0] * lpc[2] + (2 << 28); - - f2[0] = 1 << 28; - f2[1] = (lpc[1] << 14) + (lpc[3] << 14); - f2[2] = lpc[1] * lpc[3] + (2 << 28); - - /* - * Calculate and scale the coefficients by 1/2 in - * each iteration for a final scaling factor of Q25 - */ - for (i = 2; i < LPC_ORDER / 2; i++) { - f1[i + 1] = f1[i - 1] + MULL2(f1[i], lpc[2 * i]); - f2[i + 1] = f2[i - 1] + MULL2(f2[i], lpc[2 * i + 1]); - - for (j = i; j >= 2; j--) { - f1[j] = MULL2(f1[j - 1], lpc[2 * i]) + - (f1[j] >> 1) + (f1[j - 2] >> 1); - f2[j] = MULL2(f2[j - 1], lpc[2 * i + 1]) + - (f2[j] >> 1) + (f2[j - 2] >> 1); - } - - f1[0] >>= 1; - f2[0] >>= 1; - f1[1] = ((lpc[2 * i] << 16 >> i) + f1[1]) >> 1; - f2[1] = ((lpc[2 * i + 1] << 16 >> i) + f2[1]) >> 1; - } - - /* Convert polynomial coefficients to LPC coefficients */ - for (i = 0; i < LPC_ORDER / 2; i++) { - int64_t ff1 = f1[i + 1] + f1[i]; - int64_t ff2 = f2[i + 1] - f2[i]; - - lpc[i] = av_clipl_int32(((ff1 + ff2) << 3) + (1 << 15)) >> 16; - lpc[LPC_ORDER - i - 1] = av_clipl_int32(((ff1 - ff2) << 3) + - (1 << 15)) >> 16; - } -} - -/** - * Quantize LSP frequencies by interpolation and convert them to - * the corresponding LPC coefficients. - * - * @param lpc buffer for LPC coefficients - * @param cur_lsp the current LSP vector - * @param prev_lsp the previous LSP vector - */ -static void lsp_interpolate(int16_t *lpc, int16_t *cur_lsp, int16_t *prev_lsp) -{ - int i; - int16_t *lpc_ptr = lpc; - - /* cur_lsp * 0.25 + prev_lsp * 0.75 */ - ff_acelp_weighted_vector_sum(lpc, cur_lsp, prev_lsp, - 4096, 12288, 1 << 13, 14, LPC_ORDER); - ff_acelp_weighted_vector_sum(lpc + LPC_ORDER, cur_lsp, prev_lsp, - 8192, 8192, 1 << 13, 14, LPC_ORDER); - ff_acelp_weighted_vector_sum(lpc + 2 * LPC_ORDER, cur_lsp, prev_lsp, - 12288, 4096, 1 << 13, 14, LPC_ORDER); - memcpy(lpc + 3 * LPC_ORDER, cur_lsp, LPC_ORDER * sizeof(*lpc)); - - for (i = 0; i < SUBFRAMES; i++) { - lsp2lpc(lpc_ptr); - lpc_ptr += LPC_ORDER; - } -} - -/** - * Generate a train of dirac functions with period as pitch lag. - */ -static void gen_dirac_train(int16_t *buf, int pitch_lag) -{ - int16_t vector[SUBFRAME_LEN]; - int i, j; - - memcpy(vector, buf, SUBFRAME_LEN * sizeof(*vector)); - for (i = pitch_lag; i < SUBFRAME_LEN; i += pitch_lag) { - for (j = 0; j < SUBFRAME_LEN - i; j++) - buf[i + j] += vector[j]; - } -} - -/** - * Generate fixed codebook excitation vector. - * - * @param vector decoded excitation vector - * @param subfrm current subframe - * @param cur_rate current bitrate - * @param pitch_lag closed loop pitch lag - * @param index current subframe index - */ -static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe *subfrm, - enum Rate cur_rate, int pitch_lag, int index) -{ - int temp, i, j; - - memset(vector, 0, SUBFRAME_LEN * sizeof(*vector)); - - if (cur_rate == RATE_6300) { - if (subfrm->pulse_pos >= max_pos[index]) - return; - - /* Decode amplitudes and positions */ - j = PULSE_MAX - pulses[index]; - temp = subfrm->pulse_pos; - for (i = 0; i < SUBFRAME_LEN / GRID_SIZE; i++) { - temp -= combinatorial_table[j][i]; - if (temp >= 0) - continue; - temp += combinatorial_table[j++][i]; - if (subfrm->pulse_sign & (1 << (PULSE_MAX - j))) { - vector[subfrm->grid_index + GRID_SIZE * i] = - -fixed_cb_gain[subfrm->amp_index]; - } else { - vector[subfrm->grid_index + GRID_SIZE * i] = - fixed_cb_gain[subfrm->amp_index]; - } - if (j == PULSE_MAX) - break; - } - if (subfrm->dirac_train == 1) - gen_dirac_train(vector, pitch_lag); - } else { /* 5300 bps */ - int cb_gain = fixed_cb_gain[subfrm->amp_index]; - int cb_shift = subfrm->grid_index; - int cb_sign = subfrm->pulse_sign; - int cb_pos = subfrm->pulse_pos; - int offset, beta, lag; - - for (i = 0; i < 8; i += 2) { - offset = ((cb_pos & 7) << 3) + cb_shift + i; - vector[offset] = (cb_sign & 1) ? cb_gain : -cb_gain; - cb_pos >>= 3; - cb_sign >>= 1; - } - - /* Enhance harmonic components */ - lag = pitch_contrib[subfrm->ad_cb_gain << 1] + pitch_lag + - subfrm->ad_cb_lag - 1; - beta = pitch_contrib[(subfrm->ad_cb_gain << 1) + 1]; - - if (lag < SUBFRAME_LEN - 2) { - for (i = lag; i < SUBFRAME_LEN; i++) - vector[i] += beta * vector[i - lag] >> 15; - } - } -} - -/** - * Get delayed contribution from the previous excitation vector. - */ -static void get_residual(int16_t *residual, int16_t *prev_excitation, int lag) -{ - int offset = PITCH_MAX - PITCH_ORDER / 2 - lag; - int i; - - residual[0] = prev_excitation[offset]; - residual[1] = prev_excitation[offset + 1]; - - offset += 2; - for (i = 2; i < SUBFRAME_LEN + PITCH_ORDER - 1; i++) - residual[i] = prev_excitation[offset + (i - 2) % lag]; -} - -static int dot_product(const int16_t *a, const int16_t *b, int length) -{ - int sum = ff_dot_product(a,b,length); - return av_sat_add32(sum, sum); -} - -/** - * Generate adaptive codebook excitation. - */ -static void gen_acb_excitation(int16_t *vector, int16_t *prev_excitation, - int pitch_lag, G723_1_Subframe *subfrm, - enum Rate cur_rate) -{ - int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1]; - const int16_t *cb_ptr; - int lag = pitch_lag + subfrm->ad_cb_lag - 1; - - int i; - int sum; - - get_residual(residual, prev_excitation, lag); - - /* Select quantization table */ - if (cur_rate == RATE_6300 && pitch_lag < SUBFRAME_LEN - 2) { - cb_ptr = adaptive_cb_gain85; - } else - cb_ptr = adaptive_cb_gain170; - - /* Calculate adaptive vector */ - cb_ptr += subfrm->ad_cb_gain * 20; - for (i = 0; i < SUBFRAME_LEN; i++) { - sum = ff_dot_product(residual + i, cb_ptr, PITCH_ORDER); - vector[i] = av_sat_dadd32(1 << 15, av_sat_add32(sum, sum)) >> 16; - } -} - -/** - * Estimate maximum auto-correlation around pitch lag. - * - * @param buf buffer with offset applied - * @param offset offset of the excitation vector - * @param ccr_max pointer to the maximum auto-correlation - * @param pitch_lag decoded pitch lag - * @param length length of autocorrelation - * @param dir forward lag(1) / backward lag(-1) - */ -static int autocorr_max(const int16_t *buf, int offset, int *ccr_max, - int pitch_lag, int length, int dir) -{ - int limit, ccr, lag = 0; - int i; - - pitch_lag = FFMIN(PITCH_MAX - 3, pitch_lag); - if (dir > 0) - limit = FFMIN(FRAME_LEN + PITCH_MAX - offset - length, pitch_lag + 3); - else - limit = pitch_lag + 3; - - for (i = pitch_lag - 3; i <= limit; i++) { - ccr = dot_product(buf, buf + dir * i, length); - - if (ccr > *ccr_max) { - *ccr_max = ccr; - lag = i; - } - } - return lag; -} - -/** - * Calculate pitch postfilter optimal and scaling gains. - * - * @param lag pitch postfilter forward/backward lag - * @param ppf pitch postfilter parameters - * @param cur_rate current bitrate - * @param tgt_eng target energy - * @param ccr cross-correlation - * @param res_eng residual energy - */ -static void comp_ppf_gains(int lag, PPFParam *ppf, enum Rate cur_rate, - int tgt_eng, int ccr, int res_eng) -{ - int pf_residual; /* square of postfiltered residual */ - int temp1, temp2; - - ppf->index = lag; - - temp1 = tgt_eng * res_eng >> 1; - temp2 = ccr * ccr << 1; - - if (temp2 > temp1) { - if (ccr >= res_eng) { - ppf->opt_gain = ppf_gain_weight[cur_rate]; - } else { - ppf->opt_gain = (ccr << 15) / res_eng * - ppf_gain_weight[cur_rate] >> 15; - } - /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */ - temp1 = (tgt_eng << 15) + (ccr * ppf->opt_gain << 1); - temp2 = (ppf->opt_gain * ppf->opt_gain >> 15) * res_eng; - pf_residual = av_sat_add32(temp1, temp2 + (1 << 15)) >> 16; - - if (tgt_eng >= pf_residual << 1) { - temp1 = 0x7fff; - } else { - temp1 = (tgt_eng << 14) / pf_residual; - } - - /* scaling_gain = sqrt(tgt_eng/pf_res^2) */ - ppf->sc_gain = square_root(temp1 << 16); - } else { - ppf->opt_gain = 0; - ppf->sc_gain = 0x7fff; - } - - ppf->opt_gain = av_clip_int16(ppf->opt_gain * ppf->sc_gain >> 15); -} - -/** - * Calculate pitch postfilter parameters. - * - * @param p the context - * @param offset offset of the excitation vector - * @param pitch_lag decoded pitch lag - * @param ppf pitch postfilter parameters - * @param cur_rate current bitrate - */ -static void comp_ppf_coeff(G723_1_Context *p, int offset, int pitch_lag, - PPFParam *ppf, enum Rate cur_rate) -{ - - int16_t scale; - int i; - int temp1, temp2; - - /* - * 0 - target energy - * 1 - forward cross-correlation - * 2 - forward residual energy - * 3 - backward cross-correlation - * 4 - backward residual energy - */ - int energy[5] = {0, 0, 0, 0, 0}; - int16_t *buf = p->audio + LPC_ORDER + offset; - int fwd_lag = autocorr_max(buf, offset, &energy[1], pitch_lag, - SUBFRAME_LEN, 1); - int back_lag = autocorr_max(buf, offset, &energy[3], pitch_lag, - SUBFRAME_LEN, -1); - - ppf->index = 0; - ppf->opt_gain = 0; - ppf->sc_gain = 0x7fff; - - /* Case 0, Section 3.6 */ - if (!back_lag && !fwd_lag) - return; - - /* Compute target energy */ - energy[0] = dot_product(buf, buf, SUBFRAME_LEN); - - /* Compute forward residual energy */ - if (fwd_lag) - energy[2] = dot_product(buf + fwd_lag, buf + fwd_lag, SUBFRAME_LEN); - - /* Compute backward residual energy */ - if (back_lag) - energy[4] = dot_product(buf - back_lag, buf - back_lag, SUBFRAME_LEN); - - /* Normalize and shorten */ - temp1 = 0; - for (i = 0; i < 5; i++) - temp1 = FFMAX(energy[i], temp1); - - scale = normalize_bits(temp1, 31); - for (i = 0; i < 5; i++) - energy[i] = (energy[i] << scale) >> 16; - - if (fwd_lag && !back_lag) { /* Case 1 */ - comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1], - energy[2]); - } else if (!fwd_lag) { /* Case 2 */ - comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3], - energy[4]); - } else { /* Case 3 */ - - /* - * Select the largest of energy[1]^2/energy[2] - * and energy[3]^2/energy[4] - */ - temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15); - temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15); - if (temp1 >= temp2) { - comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1], - energy[2]); - } else { - comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3], - energy[4]); - } - } -} - -/** - * Classify frames as voiced/unvoiced. - * - * @param p the context - * @param pitch_lag decoded pitch_lag - * @param exc_eng excitation energy estimation - * @param scale scaling factor of exc_eng - * - * @return residual interpolation index if voiced, 0 otherwise - */ -static int comp_interp_index(G723_1_Context *p, int pitch_lag, - int *exc_eng, int *scale) -{ - int offset = PITCH_MAX + 2 * SUBFRAME_LEN; - int16_t *buf = p->audio + LPC_ORDER; - - int index, ccr, tgt_eng, best_eng, temp; - - *scale = scale_vector(buf, p->excitation, FRAME_LEN + PITCH_MAX); - buf += offset; - - /* Compute maximum backward cross-correlation */ - ccr = 0; - index = autocorr_max(buf, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1); - ccr = av_sat_add32(ccr, 1 << 15) >> 16; - - /* Compute target energy */ - tgt_eng = dot_product(buf, buf, SUBFRAME_LEN * 2); - *exc_eng = av_sat_add32(tgt_eng, 1 << 15) >> 16; - - if (ccr <= 0) - return 0; - - /* Compute best energy */ - best_eng = dot_product(buf - index, buf - index, SUBFRAME_LEN * 2); - best_eng = av_sat_add32(best_eng, 1 << 15) >> 16; - - temp = best_eng * *exc_eng >> 3; - - if (temp < ccr * ccr) { - return index; - } else - return 0; -} - -/** - * Peform residual interpolation based on frame classification. - * - * @param buf decoded excitation vector - * @param out output vector - * @param lag decoded pitch lag - * @param gain interpolated gain - * @param rseed seed for random number generator - */ -static void residual_interp(int16_t *buf, int16_t *out, int lag, - int gain, int *rseed) -{ - int i; - if (lag) { /* Voiced */ - int16_t *vector_ptr = buf + PITCH_MAX; - /* Attenuate */ - for (i = 0; i < lag; i++) - out[i] = vector_ptr[i - lag] * 3 >> 2; - av_memcpy_backptr((uint8_t*)(out + lag), lag * sizeof(*out), - (FRAME_LEN - lag) * sizeof(*out)); - } else { /* Unvoiced */ - for (i = 0; i < FRAME_LEN; i++) { - *rseed = *rseed * 521 + 259; - out[i] = gain * *rseed >> 15; - } - memset(buf, 0, (FRAME_LEN + PITCH_MAX) * sizeof(*buf)); - } -} - -/** - * Perform IIR filtering. - * - * @param fir_coef FIR coefficients - * @param iir_coef IIR coefficients - * @param src source vector - * @param dest destination vector - * @param width width of the output, 16 bits(0) / 32 bits(1) - */ -#define iir_filter(fir_coef, iir_coef, src, dest, width)\ -{\ - int m, n;\ - int res_shift = 16 & ~-(width);\ - int in_shift = 16 - res_shift;\ -\ - for (m = 0; m < SUBFRAME_LEN; m++) {\ - int64_t filter = 0;\ - for (n = 1; n <= LPC_ORDER; n++) {\ - filter -= (fir_coef)[n - 1] * (src)[m - n] -\ - (iir_coef)[n - 1] * ((dest)[m - n] >> in_shift);\ - }\ -\ - (dest)[m] = av_clipl_int32(((src)[m] << 16) + (filter << 3) +\ - (1 << 15)) >> res_shift;\ - }\ -} - -/** - * Adjust gain of postfiltered signal. - * - * @param p the context - * @param buf postfiltered output vector - * @param energy input energy coefficient - */ -static void gain_scale(G723_1_Context *p, int16_t * buf, int energy) -{ - int num, denom, gain, bits1, bits2; - int i; - - num = energy; - denom = 0; - for (i = 0; i < SUBFRAME_LEN; i++) { - int temp = buf[i] >> 2; - temp *= temp; - denom = av_sat_dadd32(denom, temp); - } - - if (num && denom) { - bits1 = normalize_bits(num, 31); - bits2 = normalize_bits(denom, 31); - num = num << bits1 >> 1; - denom <<= bits2; - - bits2 = 5 + bits1 - bits2; - bits2 = FFMAX(0, bits2); - - gain = (num >> 1) / (denom >> 16); - gain = square_root(gain << 16 >> bits2); - } else { - gain = 1 << 12; - } - - for (i = 0; i < SUBFRAME_LEN; i++) { - p->pf_gain = (15 * p->pf_gain + gain + (1 << 3)) >> 4; - buf[i] = av_clip_int16((buf[i] * (p->pf_gain + (p->pf_gain >> 4)) + - (1 << 10)) >> 11); - } -} - -/** - * Perform formant filtering. - * - * @param p the context - * @param lpc quantized lpc coefficients - * @param buf input buffer - * @param dst output buffer - */ -static void formant_postfilter(G723_1_Context *p, int16_t *lpc, - int16_t *buf, int16_t *dst) -{ - int16_t filter_coef[2][LPC_ORDER]; - int filter_signal[LPC_ORDER + FRAME_LEN], *signal_ptr; - int i, j, k; - - memcpy(buf, p->fir_mem, LPC_ORDER * sizeof(*buf)); - memcpy(filter_signal, p->iir_mem, LPC_ORDER * sizeof(*filter_signal)); - - for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) { - for (k = 0; k < LPC_ORDER; k++) { - filter_coef[0][k] = (-lpc[k] * postfilter_tbl[0][k] + - (1 << 14)) >> 15; - filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] + - (1 << 14)) >> 15; - } - iir_filter(filter_coef[0], filter_coef[1], buf + i, - filter_signal + i, 1); - lpc += LPC_ORDER; - } - - memcpy(p->fir_mem, buf + FRAME_LEN, LPC_ORDER * sizeof(int16_t)); - memcpy(p->iir_mem, filter_signal + FRAME_LEN, LPC_ORDER * sizeof(int)); - - buf += LPC_ORDER; - signal_ptr = filter_signal + LPC_ORDER; - for (i = 0; i < SUBFRAMES; i++) { - int temp; - int auto_corr[2]; - int scale, energy; - - /* Normalize */ - scale = scale_vector(dst, buf, SUBFRAME_LEN); - - /* Compute auto correlation coefficients */ - auto_corr[0] = dot_product(dst, dst + 1, SUBFRAME_LEN - 1); - auto_corr[1] = dot_product(dst, dst, SUBFRAME_LEN); - - /* Compute reflection coefficient */ - temp = auto_corr[1] >> 16; - if (temp) { - temp = (auto_corr[0] >> 2) / temp; - } - p->reflection_coef = (3 * p->reflection_coef + temp + 2) >> 2; - temp = -p->reflection_coef >> 1 & ~3; - - /* Compensation filter */ - for (j = 0; j < SUBFRAME_LEN; j++) { - dst[j] = av_sat_dadd32(signal_ptr[j], - (signal_ptr[j - 1] >> 16) * temp) >> 16; - } - - /* Compute normalized signal energy */ - temp = 2 * scale + 4; - if (temp < 0) { - energy = av_clipl_int32((int64_t)auto_corr[1] << -temp); - } else - energy = auto_corr[1] >> temp; - - gain_scale(p, dst, energy); - - buf += SUBFRAME_LEN; - signal_ptr += SUBFRAME_LEN; - dst += SUBFRAME_LEN; - } -} - -static int sid_gain_to_lsp_index(int gain) -{ - if (gain < 0x10) - return gain << 6; - else if (gain < 0x20) - return gain - 8 << 7; - else - return gain - 20 << 8; -} - -static inline int cng_rand(int *state, int base) -{ - *state = (*state * 521 + 259) & 0xFFFF; - return (*state & 0x7FFF) * base >> 15; -} - -static int estimate_sid_gain(G723_1_Context *p) -{ - int i, shift, seg, seg2, t, val, val_add, x, y; - - shift = 16 - p->cur_gain * 2; - if (shift > 0) - t = p->sid_gain << shift; - else - t = p->sid_gain >> -shift; - x = t * cng_filt[0] >> 16; - - if (x >= cng_bseg[2]) - return 0x3F; - - if (x >= cng_bseg[1]) { - shift = 4; - seg = 3; - } else { - shift = 3; - seg = (x >= cng_bseg[0]); - } - seg2 = FFMIN(seg, 3); - - val = 1 << shift; - val_add = val >> 1; - for (i = 0; i < shift; i++) { - t = seg * 32 + (val << seg2); - t *= t; - if (x >= t) - val += val_add; - else - val -= val_add; - val_add >>= 1; - } - - t = seg * 32 + (val << seg2); - y = t * t - x; - if (y <= 0) { - t = seg * 32 + (val + 1 << seg2); - t = t * t - x; - val = (seg2 - 1 << 4) + val; - if (t >= y) - val++; - } else { - t = seg * 32 + (val - 1 << seg2); - t = t * t - x; - val = (seg2 - 1 << 4) + val; - if (t >= y) - val--; - } - - return val; -} - -static void generate_noise(G723_1_Context *p) -{ - int i, j, idx, t; - int off[SUBFRAMES]; - int signs[SUBFRAMES / 2 * 11], pos[SUBFRAMES / 2 * 11]; - int tmp[SUBFRAME_LEN * 2]; - int16_t *vector_ptr; - int64_t sum; - int b0, c, delta, x, shift; - - p->pitch_lag[0] = cng_rand(&p->cng_random_seed, 21) + 123; - p->pitch_lag[1] = cng_rand(&p->cng_random_seed, 19) + 123; - - for (i = 0; i < SUBFRAMES; i++) { - p->subframe[i].ad_cb_gain = cng_rand(&p->cng_random_seed, 50) + 1; - p->subframe[i].ad_cb_lag = cng_adaptive_cb_lag[i]; - } - - for (i = 0; i < SUBFRAMES / 2; i++) { - t = cng_rand(&p->cng_random_seed, 1 << 13); - off[i * 2] = t & 1; - off[i * 2 + 1] = ((t >> 1) & 1) + SUBFRAME_LEN; - t >>= 2; - for (j = 0; j < 11; j++) { - signs[i * 11 + j] = (t & 1) * 2 - 1 << 14; - t >>= 1; - } - } - - idx = 0; - for (i = 0; i < SUBFRAMES; i++) { - for (j = 0; j < SUBFRAME_LEN / 2; j++) - tmp[j] = j; - t = SUBFRAME_LEN / 2; - for (j = 0; j < pulses[i]; j++, idx++) { - int idx2 = cng_rand(&p->cng_random_seed, t); - - pos[idx] = tmp[idx2] * 2 + off[i]; - tmp[idx2] = tmp[--t]; - } - } - - vector_ptr = p->audio + LPC_ORDER; - memcpy(vector_ptr, p->prev_excitation, - PITCH_MAX * sizeof(*p->excitation)); - for (i = 0; i < SUBFRAMES; i += 2) { - gen_acb_excitation(vector_ptr, vector_ptr, - p->pitch_lag[i >> 1], &p->subframe[i], - p->cur_rate); - gen_acb_excitation(vector_ptr + SUBFRAME_LEN, - vector_ptr + SUBFRAME_LEN, - p->pitch_lag[i >> 1], &p->subframe[i + 1], - p->cur_rate); - - t = 0; - for (j = 0; j < SUBFRAME_LEN * 2; j++) - t |= FFABS(vector_ptr[j]); - t = FFMIN(t, 0x7FFF); - if (!t) { - shift = 0; - } else { - shift = -10 + av_log2(t); - if (shift < -2) - shift = -2; - } - sum = 0; - if (shift < 0) { - for (j = 0; j < SUBFRAME_LEN * 2; j++) { - t = vector_ptr[j] << -shift; - sum += t * t; - tmp[j] = t; - } - } else { - for (j = 0; j < SUBFRAME_LEN * 2; j++) { - t = vector_ptr[j] >> shift; - sum += t * t; - tmp[j] = t; - } - } - - b0 = 0; - for (j = 0; j < 11; j++) - b0 += tmp[pos[(i / 2) * 11 + j]] * signs[(i / 2) * 11 + j]; - b0 = b0 * 2 * 2979LL + (1 << 29) >> 30; // approximated division by 11 - - c = p->cur_gain * (p->cur_gain * SUBFRAME_LEN >> 5); - if (shift * 2 + 3 >= 0) - c >>= shift * 2 + 3; - else - c <<= -(shift * 2 + 3); - c = (av_clipl_int32(sum << 1) - c) * 2979LL >> 15; - - delta = b0 * b0 * 2 - c; - if (delta <= 0) { - x = -b0; - } else { - delta = square_root(delta); - x = delta - b0; - t = delta + b0; - if (FFABS(t) < FFABS(x)) - x = -t; - } - shift++; - if (shift < 0) - x >>= -shift; - else - x <<= shift; - x = av_clip(x, -10000, 10000); - - for (j = 0; j < 11; j++) { - idx = (i / 2) * 11 + j; - vector_ptr[pos[idx]] = av_clip_int16(vector_ptr[pos[idx]] + - (x * signs[idx] >> 15)); - } - - /* copy decoded data to serve as a history for the next decoded subframes */ - memcpy(vector_ptr + PITCH_MAX, vector_ptr, - sizeof(*vector_ptr) * SUBFRAME_LEN * 2); - vector_ptr += SUBFRAME_LEN * 2; - } - /* Save the excitation for the next frame */ - memcpy(p->prev_excitation, p->audio + LPC_ORDER + FRAME_LEN, - PITCH_MAX * sizeof(*p->excitation)); -} - -static int g723_1_decode_frame(AVCodecContext *avctx, void *data, - int *got_frame_ptr, AVPacket *avpkt) -{ - G723_1_Context *p = avctx->priv_data; - AVFrame *frame = data; - const uint8_t *buf = avpkt->data; - int buf_size = avpkt->size; - int dec_mode = buf[0] & 3; - - PPFParam ppf[SUBFRAMES]; - int16_t cur_lsp[LPC_ORDER]; - int16_t lpc[SUBFRAMES * LPC_ORDER]; - int16_t acb_vector[SUBFRAME_LEN]; - int16_t *out; - int bad_frame = 0, i, j, ret; - int16_t *audio = p->audio; - - if (buf_size < frame_size[dec_mode]) { - if (buf_size) - av_log(avctx, AV_LOG_WARNING, - "Expected %d bytes, got %d - skipping packet\n", - frame_size[dec_mode], buf_size); - *got_frame_ptr = 0; - return buf_size; - } - - if (unpack_bitstream(p, buf, buf_size) < 0) { - bad_frame = 1; - if (p->past_frame_type == ACTIVE_FRAME) - p->cur_frame_type = ACTIVE_FRAME; - else - p->cur_frame_type = UNTRANSMITTED_FRAME; - } - - frame->nb_samples = FRAME_LEN; - if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) - return ret; - - out = (int16_t *)frame->data[0]; - - if (p->cur_frame_type == ACTIVE_FRAME) { - if (!bad_frame) - p->erased_frames = 0; - else if (p->erased_frames != 3) - p->erased_frames++; - - inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame); - lsp_interpolate(lpc, cur_lsp, p->prev_lsp); - - /* Save the lsp_vector for the next frame */ - memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(*p->prev_lsp)); - - /* Generate the excitation for the frame */ - memcpy(p->excitation, p->prev_excitation, - PITCH_MAX * sizeof(*p->excitation)); - if (!p->erased_frames) { - int16_t *vector_ptr = p->excitation + PITCH_MAX; - - /* Update interpolation gain memory */ - p->interp_gain = fixed_cb_gain[(p->subframe[2].amp_index + - p->subframe[3].amp_index) >> 1]; - for (i = 0; i < SUBFRAMES; i++) { - gen_fcb_excitation(vector_ptr, &p->subframe[i], p->cur_rate, - p->pitch_lag[i >> 1], i); - gen_acb_excitation(acb_vector, &p->excitation[SUBFRAME_LEN * i], - p->pitch_lag[i >> 1], &p->subframe[i], - p->cur_rate); - /* Get the total excitation */ - for (j = 0; j < SUBFRAME_LEN; j++) { - int v = av_clip_int16(vector_ptr[j] << 1); - vector_ptr[j] = av_clip_int16(v + acb_vector[j]); - } - vector_ptr += SUBFRAME_LEN; - } - - vector_ptr = p->excitation + PITCH_MAX; - - p->interp_index = comp_interp_index(p, p->pitch_lag[1], - &p->sid_gain, &p->cur_gain); - - /* Peform pitch postfiltering */ - if (p->postfilter) { - i = PITCH_MAX; - for (j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) - comp_ppf_coeff(p, i, p->pitch_lag[j >> 1], - ppf + j, p->cur_rate); - - for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) - ff_acelp_weighted_vector_sum(p->audio + LPC_ORDER + i, - vector_ptr + i, - vector_ptr + i + ppf[j].index, - ppf[j].sc_gain, - ppf[j].opt_gain, - 1 << 14, 15, SUBFRAME_LEN); - } else { - audio = vector_ptr - LPC_ORDER; - } - - /* Save the excitation for the next frame */ - memcpy(p->prev_excitation, p->excitation + FRAME_LEN, - PITCH_MAX * sizeof(*p->excitation)); - } else { - p->interp_gain = (p->interp_gain * 3 + 2) >> 2; - if (p->erased_frames == 3) { - /* Mute output */ - memset(p->excitation, 0, - (FRAME_LEN + PITCH_MAX) * sizeof(*p->excitation)); - memset(p->prev_excitation, 0, - PITCH_MAX * sizeof(*p->excitation)); - memset(frame->data[0], 0, - (FRAME_LEN + LPC_ORDER) * sizeof(int16_t)); - } else { - int16_t *buf = p->audio + LPC_ORDER; - - /* Regenerate frame */ - residual_interp(p->excitation, buf, p->interp_index, - p->interp_gain, &p->random_seed); - - /* Save the excitation for the next frame */ - memcpy(p->prev_excitation, buf + (FRAME_LEN - PITCH_MAX), - PITCH_MAX * sizeof(*p->excitation)); - } - } - p->cng_random_seed = CNG_RANDOM_SEED; - } else { - if (p->cur_frame_type == SID_FRAME) { - p->sid_gain = sid_gain_to_lsp_index(p->subframe[0].amp_index); - inverse_quant(p->sid_lsp, p->prev_lsp, p->lsp_index, 0); - } else if (p->past_frame_type == ACTIVE_FRAME) { - p->sid_gain = estimate_sid_gain(p); - } - - if (p->past_frame_type == ACTIVE_FRAME) - p->cur_gain = p->sid_gain; - else - p->cur_gain = (p->cur_gain * 7 + p->sid_gain) >> 3; - generate_noise(p); - lsp_interpolate(lpc, p->sid_lsp, p->prev_lsp); - /* Save the lsp_vector for the next frame */ - memcpy(p->prev_lsp, p->sid_lsp, LPC_ORDER * sizeof(*p->prev_lsp)); - } - - p->past_frame_type = p->cur_frame_type; - - memcpy(p->audio, p->synth_mem, LPC_ORDER * sizeof(*p->audio)); - for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) - ff_celp_lp_synthesis_filter(p->audio + i, &lpc[j * LPC_ORDER], - audio + i, SUBFRAME_LEN, LPC_ORDER, - 0, 1, 1 << 12); - memcpy(p->synth_mem, p->audio + FRAME_LEN, LPC_ORDER * sizeof(*p->audio)); - - if (p->postfilter) { - formant_postfilter(p, lpc, p->audio, out); - } else { // if output is not postfiltered it should be scaled by 2 - for (i = 0; i < FRAME_LEN; i++) - out[i] = av_clip_int16(p->audio[LPC_ORDER + i] << 1); - } - - *got_frame_ptr = 1; - - return frame_size[dec_mode]; -} - -#define OFFSET(x) offsetof(G723_1_Context, x) -#define AD AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM - -static const AVOption options[] = { - { "postfilter", "postfilter on/off", OFFSET(postfilter), AV_OPT_TYPE_INT, - { .i64 = 1 }, 0, 1, AD }, - { NULL } -}; - - -static const AVClass g723_1dec_class = { - .class_name = "G.723.1 decoder", - .item_name = av_default_item_name, - .option = options, - .version = LIBAVUTIL_VERSION_INT, -}; - -AVCodec ff_g723_1_decoder = { - .name = "g723_1", - .long_name = NULL_IF_CONFIG_SMALL("G.723.1"), - .type = AVMEDIA_TYPE_AUDIO, - .id = AV_CODEC_ID_G723_1, - .priv_data_size = sizeof(G723_1_Context), - .init = g723_1_decode_init, - .decode = g723_1_decode_frame, - .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1, - .priv_class = &g723_1dec_class, -}; - -#if CONFIG_G723_1_ENCODER -#define BITSTREAM_WRITER_LE -#include "put_bits.h" - -static av_cold int g723_1_encode_init(AVCodecContext *avctx) -{ - G723_1_Context *p = avctx->priv_data; - - if (avctx->sample_rate != 8000) { - av_log(avctx, AV_LOG_ERROR, "Only 8000Hz sample rate supported\n"); - return -1; - } - - if (avctx->channels != 1) { - av_log(avctx, AV_LOG_ERROR, "Only mono supported\n"); - return AVERROR(EINVAL); - } - - if (avctx->bit_rate == 6300) { - p->cur_rate = RATE_6300; - } else if (avctx->bit_rate == 5300) { - av_log(avctx, AV_LOG_ERROR, "Bitrate not supported yet, use 6.3k\n"); - return AVERROR_PATCHWELCOME; - } else { - av_log(avctx, AV_LOG_ERROR, - "Bitrate not supported, use 6.3k\n"); - return AVERROR(EINVAL); - } - avctx->frame_size = 240; - memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(int16_t)); - - return 0; -} - -/** - * Remove DC component from the input signal. - * - * @param buf input signal - * @param fir zero memory - * @param iir pole memory - */ -static void highpass_filter(int16_t *buf, int16_t *fir, int *iir) -{ - int i; - for (i = 0; i < FRAME_LEN; i++) { - *iir = (buf[i] << 15) + ((-*fir) << 15) + MULL2(*iir, 0x7f00); - *fir = buf[i]; - buf[i] = av_clipl_int32((int64_t)*iir + (1 << 15)) >> 16; - } -} - -/** - * Estimate autocorrelation of the input vector. - * - * @param buf input buffer - * @param autocorr autocorrelation coefficients vector - */ -static void comp_autocorr(int16_t *buf, int16_t *autocorr) -{ - int i, scale, temp; - int16_t vector[LPC_FRAME]; - - scale_vector(vector, buf, LPC_FRAME); - - /* Apply the Hamming window */ - for (i = 0; i < LPC_FRAME; i++) - vector[i] = (vector[i] * hamming_window[i] + (1 << 14)) >> 15; - - /* Compute the first autocorrelation coefficient */ - temp = ff_dot_product(vector, vector, LPC_FRAME); - - /* Apply a white noise correlation factor of (1025/1024) */ - temp += temp >> 10; - - /* Normalize */ - scale = normalize_bits_int32(temp); - autocorr[0] = av_clipl_int32((int64_t)(temp << scale) + - (1 << 15)) >> 16; - - /* Compute the remaining coefficients */ - if (!autocorr[0]) { - memset(autocorr + 1, 0, LPC_ORDER * sizeof(int16_t)); - } else { - for (i = 1; i <= LPC_ORDER; i++) { - temp = ff_dot_product(vector, vector + i, LPC_FRAME - i); - temp = MULL2((temp << scale), binomial_window[i - 1]); - autocorr[i] = av_clipl_int32((int64_t)temp + (1 << 15)) >> 16; - } - } -} - -/** - * Use Levinson-Durbin recursion to compute LPC coefficients from - * autocorrelation values. - * - * @param lpc LPC coefficients vector - * @param autocorr autocorrelation coefficients vector - * @param error prediction error - */ -static void levinson_durbin(int16_t *lpc, int16_t *autocorr, int16_t error) -{ - int16_t vector[LPC_ORDER]; - int16_t partial_corr; - int i, j, temp; - - memset(lpc, 0, LPC_ORDER * sizeof(int16_t)); - - for (i = 0; i < LPC_ORDER; i++) { - /* Compute the partial correlation coefficient */ - temp = 0; - for (j = 0; j < i; j++) - temp -= lpc[j] * autocorr[i - j - 1]; - temp = ((autocorr[i] << 13) + temp) << 3; - - if (FFABS(temp) >= (error << 16)) - break; - - partial_corr = temp / (error << 1); - - lpc[i] = av_clipl_int32((int64_t)(partial_corr << 14) + - (1 << 15)) >> 16; - - /* Update the prediction error */ - temp = MULL2(temp, partial_corr); - error = av_clipl_int32((int64_t)(error << 16) - temp + - (1 << 15)) >> 16; - - memcpy(vector, lpc, i * sizeof(int16_t)); - for (j = 0; j < i; j++) { - temp = partial_corr * vector[i - j - 1] << 1; - lpc[j] = av_clipl_int32((int64_t)(lpc[j] << 16) - temp + - (1 << 15)) >> 16; - } - } -} - -/** - * Calculate LPC coefficients for the current frame. - * - * @param buf current frame - * @param prev_data 2 trailing subframes of the previous frame - * @param lpc LPC coefficients vector - */ -static void comp_lpc_coeff(int16_t *buf, int16_t *lpc) -{ - int16_t autocorr[(LPC_ORDER + 1) * SUBFRAMES]; - int16_t *autocorr_ptr = autocorr; - int16_t *lpc_ptr = lpc; - int i, j; - - for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) { - comp_autocorr(buf + i, autocorr_ptr); - levinson_durbin(lpc_ptr, autocorr_ptr + 1, autocorr_ptr[0]); - - lpc_ptr += LPC_ORDER; - autocorr_ptr += LPC_ORDER + 1; - } -} - -static void lpc2lsp(int16_t *lpc, int16_t *prev_lsp, int16_t *lsp) -{ - int f[LPC_ORDER + 2]; ///< coefficients of the sum and difference - ///< polynomials (F1, F2) ordered as - ///< f1[0], f2[0], ...., f1[5], f2[5] - - int max, shift, cur_val, prev_val, count, p; - int i, j; - int64_t temp; - - /* Initialize f1[0] and f2[0] to 1 in Q25 */ - for (i = 0; i < LPC_ORDER; i++) - lsp[i] = (lpc[i] * bandwidth_expand[i] + (1 << 14)) >> 15; - - /* Apply bandwidth expansion on the LPC coefficients */ - f[0] = f[1] = 1 << 25; - - /* Compute the remaining coefficients */ - for (i = 0; i < LPC_ORDER / 2; i++) { - /* f1 */ - f[2 * i + 2] = -f[2 * i] - ((lsp[i] + lsp[LPC_ORDER - 1 - i]) << 12); - /* f2 */ - f[2 * i + 3] = f[2 * i + 1] - ((lsp[i] - lsp[LPC_ORDER - 1 - i]) << 12); - } - - /* Divide f1[5] and f2[5] by 2 for use in polynomial evaluation */ - f[LPC_ORDER] >>= 1; - f[LPC_ORDER + 1] >>= 1; - - /* Normalize and shorten */ - max = FFABS(f[0]); - for (i = 1; i < LPC_ORDER + 2; i++) - max = FFMAX(max, FFABS(f[i])); - - shift = normalize_bits_int32(max); - - for (i = 0; i < LPC_ORDER + 2; i++) - f[i] = av_clipl_int32((int64_t)(f[i] << shift) + (1 << 15)) >> 16; - - /** - * Evaluate F1 and F2 at uniform intervals of pi/256 along the - * unit circle and check for zero crossings. - */ - p = 0; - temp = 0; - for (i = 0; i <= LPC_ORDER / 2; i++) - temp += f[2 * i] * cos_tab[0]; - prev_val = av_clipl_int32(temp << 1); - count = 0; - for ( i = 1; i < COS_TBL_SIZE / 2; i++) { - /* Evaluate */ - temp = 0; - for (j = 0; j <= LPC_ORDER / 2; j++) - temp += f[LPC_ORDER - 2 * j + p] * cos_tab[i * j % COS_TBL_SIZE]; - cur_val = av_clipl_int32(temp << 1); - - /* Check for sign change, indicating a zero crossing */ - if ((cur_val ^ prev_val) < 0) { - int abs_cur = FFABS(cur_val); - int abs_prev = FFABS(prev_val); - int sum = abs_cur + abs_prev; - - shift = normalize_bits_int32(sum); - sum <<= shift; - abs_prev = abs_prev << shift >> 8; - lsp[count++] = ((i - 1) << 7) + (abs_prev >> 1) / (sum >> 16); - - if (count == LPC_ORDER) - break; - - /* Switch between sum and difference polynomials */ - p ^= 1; - - /* Evaluate */ - temp = 0; - for (j = 0; j <= LPC_ORDER / 2; j++){ - temp += f[LPC_ORDER - 2 * j + p] * - cos_tab[i * j % COS_TBL_SIZE]; - } - cur_val = av_clipl_int32(temp<<1); - } - prev_val = cur_val; - } - - if (count != LPC_ORDER) - memcpy(lsp, prev_lsp, LPC_ORDER * sizeof(int16_t)); -} - -/** - * Quantize the current LSP subvector. - * - * @param num band number - * @param offset offset of the current subvector in an LPC_ORDER vector - * @param size size of the current subvector - */ -#define get_index(num, offset, size) \ -{\ - int error, max = -1;\ - int16_t temp[4];\ - int i, j;\ - for (i = 0; i < LSP_CB_SIZE; i++) {\ - for (j = 0; j < size; j++){\ - temp[j] = (weight[j + (offset)] * lsp_band##num[i][j] +\ - (1 << 14)) >> 15;\ - }\ - error = dot_product(lsp + (offset), temp, size) << 1;\ - error -= dot_product(lsp_band##num[i], temp, size);\ - if (error > max) {\ - max = error;\ - lsp_index[num] = i;\ - }\ - }\ -} - -/** - * Vector quantize the LSP frequencies. - * - * @param lsp the current lsp vector - * @param prev_lsp the previous lsp vector - */ -static void lsp_quantize(uint8_t *lsp_index, int16_t *lsp, int16_t *prev_lsp) -{ - int16_t weight[LPC_ORDER]; - int16_t min, max; - int shift, i; - - /* Calculate the VQ weighting vector */ - weight[0] = (1 << 20) / (lsp[1] - lsp[0]); - weight[LPC_ORDER - 1] = (1 << 20) / - (lsp[LPC_ORDER - 1] - lsp[LPC_ORDER - 2]); - - for (i = 1; i < LPC_ORDER - 1; i++) { - min = FFMIN(lsp[i] - lsp[i - 1], lsp[i + 1] - lsp[i]); - if (min > 0x20) - weight[i] = (1 << 20) / min; - else - weight[i] = INT16_MAX; - } - - /* Normalize */ - max = 0; - for (i = 0; i < LPC_ORDER; i++) - max = FFMAX(weight[i], max); - - shift = normalize_bits_int16(max); - for (i = 0; i < LPC_ORDER; i++) { - weight[i] <<= shift; - } - - /* Compute the VQ target vector */ - for (i = 0; i < LPC_ORDER; i++) { - lsp[i] -= dc_lsp[i] + - (((prev_lsp[i] - dc_lsp[i]) * 12288 + (1 << 14)) >> 15); - } - - get_index(0, 0, 3); - get_index(1, 3, 3); - get_index(2, 6, 4); -} - -/** - * Apply the formant perceptual weighting filter. - * - * @param flt_coef filter coefficients - * @param unq_lpc unquantized lpc vector - */ -static void perceptual_filter(G723_1_Context *p, int16_t *flt_coef, - int16_t *unq_lpc, int16_t *buf) -{ - int16_t vector[FRAME_LEN + LPC_ORDER]; - int i, j, k, l = 0; - - memcpy(buf, p->iir_mem, sizeof(int16_t) * LPC_ORDER); - memcpy(vector, p->fir_mem, sizeof(int16_t) * LPC_ORDER); - memcpy(vector + LPC_ORDER, buf + LPC_ORDER, sizeof(int16_t) * FRAME_LEN); - - for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) { - for (k = 0; k < LPC_ORDER; k++) { - flt_coef[k + 2 * l] = (unq_lpc[k + l] * percept_flt_tbl[0][k] + - (1 << 14)) >> 15; - flt_coef[k + 2 * l + LPC_ORDER] = (unq_lpc[k + l] * - percept_flt_tbl[1][k] + - (1 << 14)) >> 15; - } - iir_filter(flt_coef + 2 * l, flt_coef + 2 * l + LPC_ORDER, vector + i, - buf + i, 0); - l += LPC_ORDER; - } - memcpy(p->iir_mem, buf + FRAME_LEN, sizeof(int16_t) * LPC_ORDER); - memcpy(p->fir_mem, vector + FRAME_LEN, sizeof(int16_t) * LPC_ORDER); -} - -/** - * Estimate the open loop pitch period. - * - * @param buf perceptually weighted speech - * @param start estimation is carried out from this position - */ -static int estimate_pitch(int16_t *buf, int start) -{ - int max_exp = 32; - int max_ccr = 0x4000; - int max_eng = 0x7fff; - int index = PITCH_MIN; - int offset = start - PITCH_MIN + 1; - - int ccr, eng, orig_eng, ccr_eng, exp; - int diff, temp; - - int i; - - orig_eng = ff_dot_product(buf + offset, buf + offset, HALF_FRAME_LEN); - - for (i = PITCH_MIN; i <= PITCH_MAX - 3; i++) { - offset--; - - /* Update energy and compute correlation */ - orig_eng += buf[offset] * buf[offset] - - buf[offset + HALF_FRAME_LEN] * buf[offset + HALF_FRAME_LEN]; - ccr = ff_dot_product(buf + start, buf + offset, HALF_FRAME_LEN); - if (ccr <= 0) - continue; - - /* Split into mantissa and exponent to maintain precision */ - exp = normalize_bits_int32(ccr); - ccr = av_clipl_int32((int64_t)(ccr << exp) + (1 << 15)) >> 16; - exp <<= 1; - ccr *= ccr; - temp = normalize_bits_int32(ccr); - ccr = ccr << temp >> 16; - exp += temp; - - temp = normalize_bits_int32(orig_eng); - eng = av_clipl_int32((int64_t)(orig_eng << temp) + (1 << 15)) >> 16; - exp -= temp; - - if (ccr >= eng) { - exp--; - ccr >>= 1; - } - if (exp > max_exp) - continue; - - if (exp + 1 < max_exp) - goto update; - - /* Equalize exponents before comparison */ - if (exp + 1 == max_exp) - temp = max_ccr >> 1; - else - temp = max_ccr; - ccr_eng = ccr * max_eng; - diff = ccr_eng - eng * temp; - if (diff > 0 && (i - index < PITCH_MIN || diff > ccr_eng >> 2)) { -update: - index = i; - max_exp = exp; - max_ccr = ccr; - max_eng = eng; - } - } - return index; -} - -/** - * Compute harmonic noise filter parameters. - * - * @param buf perceptually weighted speech - * @param pitch_lag open loop pitch period - * @param hf harmonic filter parameters - */ -static void comp_harmonic_coeff(int16_t *buf, int16_t pitch_lag, HFParam *hf) -{ - int ccr, eng, max_ccr, max_eng; - int exp, max, diff; - int energy[15]; - int i, j; - - for (i = 0, j = pitch_lag - 3; j <= pitch_lag + 3; i++, j++) { - /* Compute residual energy */ - energy[i << 1] = ff_dot_product(buf - j, buf - j, SUBFRAME_LEN); - /* Compute correlation */ - energy[(i << 1) + 1] = ff_dot_product(buf, buf - j, SUBFRAME_LEN); - } - - /* Compute target energy */ - energy[14] = ff_dot_product(buf, buf, SUBFRAME_LEN); - - /* Normalize */ - max = 0; - for (i = 0; i < 15; i++) - max = FFMAX(max, FFABS(energy[i])); - - exp = normalize_bits_int32(max); - for (i = 0; i < 15; i++) { - energy[i] = av_clipl_int32((int64_t)(energy[i] << exp) + - (1 << 15)) >> 16; - } - - hf->index = -1; - hf->gain = 0; - max_ccr = 1; - max_eng = 0x7fff; - - for (i = 0; i <= 6; i++) { - eng = energy[i << 1]; - ccr = energy[(i << 1) + 1]; - - if (ccr <= 0) - continue; - - ccr = (ccr * ccr + (1 << 14)) >> 15; - diff = ccr * max_eng - eng * max_ccr; - if (diff > 0) { - max_ccr = ccr; - max_eng = eng; - hf->index = i; - } - } - - if (hf->index == -1) { - hf->index = pitch_lag; - return; - } - - eng = energy[14] * max_eng; - eng = (eng >> 2) + (eng >> 3); - ccr = energy[(hf->index << 1) + 1] * energy[(hf->index << 1) + 1]; - if (eng < ccr) { - eng = energy[(hf->index << 1) + 1]; - - if (eng >= max_eng) - hf->gain = 0x2800; - else - hf->gain = ((eng << 15) / max_eng * 0x2800 + (1 << 14)) >> 15; - } - hf->index += pitch_lag - 3; -} - -/** - * Apply the harmonic noise shaping filter. - * - * @param hf filter parameters - */ -static void harmonic_filter(HFParam *hf, const int16_t *src, int16_t *dest) -{ - int i; - - for (i = 0; i < SUBFRAME_LEN; i++) { - int64_t temp = hf->gain * src[i - hf->index] << 1; - dest[i] = av_clipl_int32((src[i] << 16) - temp + (1 << 15)) >> 16; - } -} - -static void harmonic_noise_sub(HFParam *hf, const int16_t *src, int16_t *dest) -{ - int i; - for (i = 0; i < SUBFRAME_LEN; i++) { - int64_t temp = hf->gain * src[i - hf->index] << 1; - dest[i] = av_clipl_int32(((dest[i] - src[i]) << 16) + temp + - (1 << 15)) >> 16; - - } -} - -/** - * Combined synthesis and formant perceptual weighting filer. - * - * @param qnt_lpc quantized lpc coefficients - * @param perf_lpc perceptual filter coefficients - * @param perf_fir perceptual filter fir memory - * @param perf_iir perceptual filter iir memory - * @param scale the filter output will be scaled by 2^scale - */ -static void synth_percept_filter(int16_t *qnt_lpc, int16_t *perf_lpc, - int16_t *perf_fir, int16_t *perf_iir, - const int16_t *src, int16_t *dest, int scale) -{ - int i, j; - int16_t buf_16[SUBFRAME_LEN + LPC_ORDER]; - int64_t buf[SUBFRAME_LEN]; - - int16_t *bptr_16 = buf_16 + LPC_ORDER; - - memcpy(buf_16, perf_fir, sizeof(int16_t) * LPC_ORDER); - memcpy(dest - LPC_ORDER, perf_iir, sizeof(int16_t) * LPC_ORDER); - - for (i = 0; i < SUBFRAME_LEN; i++) { - int64_t temp = 0; - for (j = 1; j <= LPC_ORDER; j++) - temp -= qnt_lpc[j - 1] * bptr_16[i - j]; - - buf[i] = (src[i] << 15) + (temp << 3); - bptr_16[i] = av_clipl_int32(buf[i] + (1 << 15)) >> 16; - } - - for (i = 0; i < SUBFRAME_LEN; i++) { - int64_t fir = 0, iir = 0; - for (j = 1; j <= LPC_ORDER; j++) { - fir -= perf_lpc[j - 1] * bptr_16[i - j]; - iir += perf_lpc[j + LPC_ORDER - 1] * dest[i - j]; - } - dest[i] = av_clipl_int32(((buf[i] + (fir << 3)) << scale) + (iir << 3) + - (1 << 15)) >> 16; - } - memcpy(perf_fir, buf_16 + SUBFRAME_LEN, sizeof(int16_t) * LPC_ORDER); - memcpy(perf_iir, dest + SUBFRAME_LEN - LPC_ORDER, - sizeof(int16_t) * LPC_ORDER); -} - -/** - * Compute the adaptive codebook contribution. - * - * @param buf input signal - * @param index the current subframe index - */ -static void acb_search(G723_1_Context *p, int16_t *residual, - int16_t *impulse_resp, const int16_t *buf, - int index) -{ - - int16_t flt_buf[PITCH_ORDER][SUBFRAME_LEN]; - - const int16_t *cb_tbl = adaptive_cb_gain85; - - int ccr_buf[PITCH_ORDER * SUBFRAMES << 2]; - - int pitch_lag = p->pitch_lag[index >> 1]; - int acb_lag = 1; - int acb_gain = 0; - int odd_frame = index & 1; - int iter = 3 + odd_frame; - int count = 0; - int tbl_size = 85; - - int i, j, k, l, max; - int64_t temp; - - if (!odd_frame) { - if (pitch_lag == PITCH_MIN) - pitch_lag++; - else - pitch_lag = FFMIN(pitch_lag, PITCH_MAX - 5); - } - - for (i = 0; i < iter; i++) { - get_residual(residual, p->prev_excitation, pitch_lag + i - 1); - - for (j = 0; j < SUBFRAME_LEN; j++) { - temp = 0; - for (k = 0; k <= j; k++) - temp += residual[PITCH_ORDER - 1 + k] * impulse_resp[j - k]; - flt_buf[PITCH_ORDER - 1][j] = av_clipl_int32((temp << 1) + - (1 << 15)) >> 16; - } - - for (j = PITCH_ORDER - 2; j >= 0; j--) { - flt_buf[j][0] = ((residual[j] << 13) + (1 << 14)) >> 15; - for (k = 1; k < SUBFRAME_LEN; k++) { - temp = (flt_buf[j + 1][k - 1] << 15) + - residual[j] * impulse_resp[k]; - flt_buf[j][k] = av_clipl_int32((temp << 1) + (1 << 15)) >> 16; - } - } - - /* Compute crosscorrelation with the signal */ - for (j = 0; j < PITCH_ORDER; j++) { - temp = ff_dot_product(buf, flt_buf[j], SUBFRAME_LEN); - ccr_buf[count++] = av_clipl_int32(temp << 1); - } - - /* Compute energies */ - for (j = 0; j < PITCH_ORDER; j++) { - ccr_buf[count++] = dot_product(flt_buf[j], flt_buf[j], - SUBFRAME_LEN); - } - - for (j = 1; j < PITCH_ORDER; j++) { - for (k = 0; k < j; k++) { - temp = ff_dot_product(flt_buf[j], flt_buf[k], SUBFRAME_LEN); - ccr_buf[count++] = av_clipl_int32(temp<<2); - } - } - } - - /* Normalize and shorten */ - max = 0; - for (i = 0; i < 20 * iter; i++) - max = FFMAX(max, FFABS(ccr_buf[i])); - - temp = normalize_bits_int32(max); - - for (i = 0; i < 20 * iter; i++){ - ccr_buf[i] = av_clipl_int32((int64_t)(ccr_buf[i] << temp) + - (1 << 15)) >> 16; - } - - max = 0; - for (i = 0; i < iter; i++) { - /* Select quantization table */ - if (!odd_frame && pitch_lag + i - 1 >= SUBFRAME_LEN - 2 || - odd_frame && pitch_lag >= SUBFRAME_LEN - 2) { - cb_tbl = adaptive_cb_gain170; - tbl_size = 170; - } - - for (j = 0, k = 0; j < tbl_size; j++, k += 20) { - temp = 0; - for (l = 0; l < 20; l++) - temp += ccr_buf[20 * i + l] * cb_tbl[k + l]; - temp = av_clipl_int32(temp); - - if (temp > max) { - max = temp; - acb_gain = j; - acb_lag = i; - } - } - } - - if (!odd_frame) { - pitch_lag += acb_lag - 1; - acb_lag = 1; - } - - p->pitch_lag[index >> 1] = pitch_lag; - p->subframe[index].ad_cb_lag = acb_lag; - p->subframe[index].ad_cb_gain = acb_gain; -} - -/** - * Subtract the adaptive codebook contribution from the input - * to obtain the residual. - * - * @param buf target vector - */ -static void sub_acb_contrib(const int16_t *residual, const int16_t *impulse_resp, - int16_t *buf) -{ - int i, j; - /* Subtract adaptive CB contribution to obtain the residual */ - for (i = 0; i < SUBFRAME_LEN; i++) { - int64_t temp = buf[i] << 14; - for (j = 0; j <= i; j++) - temp -= residual[j] * impulse_resp[i - j]; - - buf[i] = av_clipl_int32((temp << 2) + (1 << 15)) >> 16; - } -} - -/** - * Quantize the residual signal using the fixed codebook (MP-MLQ). - * - * @param optim optimized fixed codebook parameters - * @param buf excitation vector - */ -static void get_fcb_param(FCBParam *optim, int16_t *impulse_resp, - int16_t *buf, int pulse_cnt, int pitch_lag) -{ - FCBParam param; - int16_t impulse_r[SUBFRAME_LEN]; - int16_t temp_corr[SUBFRAME_LEN]; - int16_t impulse_corr[SUBFRAME_LEN]; - - int ccr1[SUBFRAME_LEN]; - int ccr2[SUBFRAME_LEN]; - int amp, err, max, max_amp_index, min, scale, i, j, k, l; - - int64_t temp; - - /* Update impulse response */ - memcpy(impulse_r, impulse_resp, sizeof(int16_t) * SUBFRAME_LEN); - param.dirac_train = 0; - if (pitch_lag < SUBFRAME_LEN - 2) { - param.dirac_train = 1; - gen_dirac_train(impulse_r, pitch_lag); - } - - for (i = 0; i < SUBFRAME_LEN; i++) - temp_corr[i] = impulse_r[i] >> 1; - - /* Compute impulse response autocorrelation */ - temp = dot_product(temp_corr, temp_corr, SUBFRAME_LEN); - - scale = normalize_bits_int32(temp); - impulse_corr[0] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16; - - for (i = 1; i < SUBFRAME_LEN; i++) { - temp = dot_product(temp_corr + i, temp_corr, SUBFRAME_LEN - i); - impulse_corr[i] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16; - } - - /* Compute crosscorrelation of impulse response with residual signal */ - scale -= 4; - for (i = 0; i < SUBFRAME_LEN; i++){ - temp = dot_product(buf + i, impulse_r, SUBFRAME_LEN - i); - if (scale < 0) - ccr1[i] = temp >> -scale; - else - ccr1[i] = av_clipl_int32(temp << scale); - } - - /* Search loop */ - for (i = 0; i < GRID_SIZE; i++) { - /* Maximize the crosscorrelation */ - max = 0; - for (j = i; j < SUBFRAME_LEN; j += GRID_SIZE) { - temp = FFABS(ccr1[j]); - if (temp >= max) { - max = temp; - param.pulse_pos[0] = j; - } - } - - /* Quantize the gain (max crosscorrelation/impulse_corr[0]) */ - amp = max; - min = 1 << 30; - max_amp_index = GAIN_LEVELS - 2; - for (j = max_amp_index; j >= 2; j--) { - temp = av_clipl_int32((int64_t)fixed_cb_gain[j] * - impulse_corr[0] << 1); - temp = FFABS(temp - amp); - if (temp < min) { - min = temp; - max_amp_index = j; - } - } - - max_amp_index--; - /* Select additional gain values */ - for (j = 1; j < 5; j++) { - for (k = i; k < SUBFRAME_LEN; k += GRID_SIZE) { - temp_corr[k] = 0; - ccr2[k] = ccr1[k]; - } - param.amp_index = max_amp_index + j - 2; - amp = fixed_cb_gain[param.amp_index]; - - param.pulse_sign[0] = (ccr2[param.pulse_pos[0]] < 0) ? -amp : amp; - temp_corr[param.pulse_pos[0]] = 1; - - for (k = 1; k < pulse_cnt; k++) { - max = -1 << 30; - for (l = i; l < SUBFRAME_LEN; l += GRID_SIZE) { - if (temp_corr[l]) - continue; - temp = impulse_corr[FFABS(l - param.pulse_pos[k - 1])]; - temp = av_clipl_int32((int64_t)temp * - param.pulse_sign[k - 1] << 1); - ccr2[l] -= temp; - temp = FFABS(ccr2[l]); - if (temp > max) { - max = temp; - param.pulse_pos[k] = l; - } - } - - param.pulse_sign[k] = (ccr2[param.pulse_pos[k]] < 0) ? - -amp : amp; - temp_corr[param.pulse_pos[k]] = 1; - } - - /* Create the error vector */ - memset(temp_corr, 0, sizeof(int16_t) * SUBFRAME_LEN); - - for (k = 0; k < pulse_cnt; k++) - temp_corr[param.pulse_pos[k]] = param.pulse_sign[k]; - - for (k = SUBFRAME_LEN - 1; k >= 0; k--) { - temp = 0; - for (l = 0; l <= k; l++) { - int prod = av_clipl_int32((int64_t)temp_corr[l] * - impulse_r[k - l] << 1); - temp = av_clipl_int32(temp + prod); - } - temp_corr[k] = temp << 2 >> 16; - } - - /* Compute square of error */ - err = 0; - for (k = 0; k < SUBFRAME_LEN; k++) { - int64_t prod; - prod = av_clipl_int32((int64_t)buf[k] * temp_corr[k] << 1); - err = av_clipl_int32(err - prod); - prod = av_clipl_int32((int64_t)temp_corr[k] * temp_corr[k]); - err = av_clipl_int32(err + prod); - } - - /* Minimize */ - if (err < optim->min_err) { - optim->min_err = err; - optim->grid_index = i; - optim->amp_index = param.amp_index; - optim->dirac_train = param.dirac_train; - - for (k = 0; k < pulse_cnt; k++) { - optim->pulse_sign[k] = param.pulse_sign[k]; - optim->pulse_pos[k] = param.pulse_pos[k]; - } - } - } - } -} - -/** - * Encode the pulse position and gain of the current subframe. - * - * @param optim optimized fixed CB parameters - * @param buf excitation vector - */ -static void pack_fcb_param(G723_1_Subframe *subfrm, FCBParam *optim, - int16_t *buf, int pulse_cnt) -{ - int i, j; - - j = PULSE_MAX - pulse_cnt; - - subfrm->pulse_sign = 0; - subfrm->pulse_pos = 0; - - for (i = 0; i < SUBFRAME_LEN >> 1; i++) { - int val = buf[optim->grid_index + (i << 1)]; - if (!val) { - subfrm->pulse_pos += combinatorial_table[j][i]; - } else { - subfrm->pulse_sign <<= 1; - if (val < 0) subfrm->pulse_sign++; - j++; - - if (j == PULSE_MAX) break; - } - } - subfrm->amp_index = optim->amp_index; - subfrm->grid_index = optim->grid_index; - subfrm->dirac_train = optim->dirac_train; -} - -/** - * Compute the fixed codebook excitation. - * - * @param buf target vector - * @param impulse_resp impulse response of the combined filter - */ -static void fcb_search(G723_1_Context *p, int16_t *impulse_resp, - int16_t *buf, int index) -{ - FCBParam optim; - int pulse_cnt = pulses[index]; - int i; - - optim.min_err = 1 << 30; - get_fcb_param(&optim, impulse_resp, buf, pulse_cnt, SUBFRAME_LEN); - - if (p->pitch_lag[index >> 1] < SUBFRAME_LEN - 2) { - get_fcb_param(&optim, impulse_resp, buf, pulse_cnt, - p->pitch_lag[index >> 1]); - } - - /* Reconstruct the excitation */ - memset(buf, 0, sizeof(int16_t) * SUBFRAME_LEN); - for (i = 0; i < pulse_cnt; i++) - buf[optim.pulse_pos[i]] = optim.pulse_sign[i]; - - pack_fcb_param(&p->subframe[index], &optim, buf, pulse_cnt); - - if (optim.dirac_train) - gen_dirac_train(buf, p->pitch_lag[index >> 1]); -} - -/** - * Pack the frame parameters into output bitstream. - * - * @param frame output buffer - * @param size size of the buffer - */ -static int pack_bitstream(G723_1_Context *p, unsigned char *frame, int size) -{ - PutBitContext pb; - int info_bits, i, temp; - - init_put_bits(&pb, frame, size); - - if (p->cur_rate == RATE_6300) { - info_bits = 0; - put_bits(&pb, 2, info_bits); - } - - put_bits(&pb, 8, p->lsp_index[2]); - put_bits(&pb, 8, p->lsp_index[1]); - put_bits(&pb, 8, p->lsp_index[0]); - - put_bits(&pb, 7, p->pitch_lag[0] - PITCH_MIN); - put_bits(&pb, 2, p->subframe[1].ad_cb_lag); - put_bits(&pb, 7, p->pitch_lag[1] - PITCH_MIN); - put_bits(&pb, 2, p->subframe[3].ad_cb_lag); - - /* Write 12 bit combined gain */ - for (i = 0; i < SUBFRAMES; i++) { - temp = p->subframe[i].ad_cb_gain * GAIN_LEVELS + - p->subframe[i].amp_index; - if (p->cur_rate == RATE_6300) - temp += p->subframe[i].dirac_train << 11; - put_bits(&pb, 12, temp); - } - - put_bits(&pb, 1, p->subframe[0].grid_index); - put_bits(&pb, 1, p->subframe[1].grid_index); - put_bits(&pb, 1, p->subframe[2].grid_index); - put_bits(&pb, 1, p->subframe[3].grid_index); - - if (p->cur_rate == RATE_6300) { - skip_put_bits(&pb, 1); /* reserved bit */ - - /* Write 13 bit combined position index */ - temp = (p->subframe[0].pulse_pos >> 16) * 810 + - (p->subframe[1].pulse_pos >> 14) * 90 + - (p->subframe[2].pulse_pos >> 16) * 9 + - (p->subframe[3].pulse_pos >> 14); - put_bits(&pb, 13, temp); - - put_bits(&pb, 16, p->subframe[0].pulse_pos & 0xffff); - put_bits(&pb, 14, p->subframe[1].pulse_pos & 0x3fff); - put_bits(&pb, 16, p->subframe[2].pulse_pos & 0xffff); - put_bits(&pb, 14, p->subframe[3].pulse_pos & 0x3fff); - - put_bits(&pb, 6, p->subframe[0].pulse_sign); - put_bits(&pb, 5, p->subframe[1].pulse_sign); - put_bits(&pb, 6, p->subframe[2].pulse_sign); - put_bits(&pb, 5, p->subframe[3].pulse_sign); - } - - flush_put_bits(&pb); - return frame_size[info_bits]; -} - -static int g723_1_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, - const AVFrame *frame, int *got_packet_ptr) -{ - G723_1_Context *p = avctx->priv_data; - int16_t unq_lpc[LPC_ORDER * SUBFRAMES]; - int16_t qnt_lpc[LPC_ORDER * SUBFRAMES]; - int16_t cur_lsp[LPC_ORDER]; - int16_t weighted_lpc[LPC_ORDER * SUBFRAMES << 1]; - int16_t vector[FRAME_LEN + PITCH_MAX]; - int offset, ret; - int16_t *in = (const int16_t *)frame->data[0]; - - HFParam hf[4]; - int i, j; - - highpass_filter(in, &p->hpf_fir_mem, &p->hpf_iir_mem); - - memcpy(vector, p->prev_data, HALF_FRAME_LEN * sizeof(int16_t)); - memcpy(vector + HALF_FRAME_LEN, in, FRAME_LEN * sizeof(int16_t)); - - comp_lpc_coeff(vector, unq_lpc); - lpc2lsp(&unq_lpc[LPC_ORDER * 3], p->prev_lsp, cur_lsp); - lsp_quantize(p->lsp_index, cur_lsp, p->prev_lsp); - - /* Update memory */ - memcpy(vector + LPC_ORDER, p->prev_data + SUBFRAME_LEN, - sizeof(int16_t) * SUBFRAME_LEN); - memcpy(vector + LPC_ORDER + SUBFRAME_LEN, in, - sizeof(int16_t) * (HALF_FRAME_LEN + SUBFRAME_LEN)); - memcpy(p->prev_data, in + HALF_FRAME_LEN, - sizeof(int16_t) * HALF_FRAME_LEN); - memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN); - - perceptual_filter(p, weighted_lpc, unq_lpc, vector); - - memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN); - memcpy(vector, p->prev_weight_sig, sizeof(int16_t) * PITCH_MAX); - memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN); - - scale_vector(vector, vector, FRAME_LEN + PITCH_MAX); - - p->pitch_lag[0] = estimate_pitch(vector, PITCH_MAX); - p->pitch_lag[1] = estimate_pitch(vector, PITCH_MAX + HALF_FRAME_LEN); - - for (i = PITCH_MAX, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) - comp_harmonic_coeff(vector + i, p->pitch_lag[j >> 1], hf + j); - - memcpy(vector, p->prev_weight_sig, sizeof(int16_t) * PITCH_MAX); - memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN); - memcpy(p->prev_weight_sig, vector + FRAME_LEN, sizeof(int16_t) * PITCH_MAX); - - for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) - harmonic_filter(hf + j, vector + PITCH_MAX + i, in + i); - - inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, 0); - lsp_interpolate(qnt_lpc, cur_lsp, p->prev_lsp); - - memcpy(p->prev_lsp, cur_lsp, sizeof(int16_t) * LPC_ORDER); - - offset = 0; - for (i = 0; i < SUBFRAMES; i++) { - int16_t impulse_resp[SUBFRAME_LEN]; - int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1]; - int16_t flt_in[SUBFRAME_LEN]; - int16_t zero[LPC_ORDER], fir[LPC_ORDER], iir[LPC_ORDER]; - - /** - * Compute the combined impulse response of the synthesis filter, - * formant perceptual weighting filter and harmonic noise shaping filter - */ - memset(zero, 0, sizeof(int16_t) * LPC_ORDER); - memset(vector, 0, sizeof(int16_t) * PITCH_MAX); - memset(flt_in, 0, sizeof(int16_t) * SUBFRAME_LEN); - - flt_in[0] = 1 << 13; /* Unit impulse */ - synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1), - zero, zero, flt_in, vector + PITCH_MAX, 1); - harmonic_filter(hf + i, vector + PITCH_MAX, impulse_resp); - - /* Compute the combined zero input response */ - flt_in[0] = 0; - memcpy(fir, p->perf_fir_mem, sizeof(int16_t) * LPC_ORDER); - memcpy(iir, p->perf_iir_mem, sizeof(int16_t) * LPC_ORDER); - - synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1), - fir, iir, flt_in, vector + PITCH_MAX, 0); - memcpy(vector, p->harmonic_mem, sizeof(int16_t) * PITCH_MAX); - harmonic_noise_sub(hf + i, vector + PITCH_MAX, in); - - acb_search(p, residual, impulse_resp, in, i); - gen_acb_excitation(residual, p->prev_excitation,p->pitch_lag[i >> 1], - &p->subframe[i], p->cur_rate); - sub_acb_contrib(residual, impulse_resp, in); - - fcb_search(p, impulse_resp, in, i); - - /* Reconstruct the excitation */ - gen_acb_excitation(impulse_resp, p->prev_excitation, p->pitch_lag[i >> 1], - &p->subframe[i], RATE_6300); - - memmove(p->prev_excitation, p->prev_excitation + SUBFRAME_LEN, - sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN)); - for (j = 0; j < SUBFRAME_LEN; j++) - in[j] = av_clip_int16((in[j] << 1) + impulse_resp[j]); - memcpy(p->prev_excitation + PITCH_MAX - SUBFRAME_LEN, in, - sizeof(int16_t) * SUBFRAME_LEN); - - /* Update filter memories */ - synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1), - p->perf_fir_mem, p->perf_iir_mem, - in, vector + PITCH_MAX, 0); - memmove(p->harmonic_mem, p->harmonic_mem + SUBFRAME_LEN, - sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN)); - memcpy(p->harmonic_mem + PITCH_MAX - SUBFRAME_LEN, vector + PITCH_MAX, - sizeof(int16_t) * SUBFRAME_LEN); - - in += SUBFRAME_LEN; - offset += LPC_ORDER; - } - - if ((ret = ff_alloc_packet2(avctx, avpkt, 24)) < 0) - return ret; - - *got_packet_ptr = 1; - avpkt->size = pack_bitstream(p, avpkt->data, avpkt->size); - return 0; -} - -AVCodec ff_g723_1_encoder = { - .name = "g723_1", - .long_name = NULL_IF_CONFIG_SMALL("G.723.1"), - .type = AVMEDIA_TYPE_AUDIO, - .id = AV_CODEC_ID_G723_1, - .priv_data_size = sizeof(G723_1_Context), - .init = g723_1_encode_init, - .encode2 = g723_1_encode_frame, - .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16, - AV_SAMPLE_FMT_NONE}, -}; -#endif |
