diff options
| author | Tim Redfern <tim@eclectronics.org> | 2014-02-17 13:36:38 +0000 |
|---|---|---|
| committer | Tim Redfern <tim@eclectronics.org> | 2014-02-17 13:36:38 +0000 |
| commit | 22e28216336da876e1fd17f380ce42eaf1446769 (patch) | |
| tree | 444dad3dc7e2656992d29f34f7bce31970c122a5 /ffmpeg/libavcodec/vp3.c | |
| parent | ae5e8541f6e06e64c28719467cdf366ac57aff31 (diff) | |
chasing indexing error
Diffstat (limited to 'ffmpeg/libavcodec/vp3.c')
| -rw-r--r-- | ffmpeg/libavcodec/vp3.c | 2492 |
1 files changed, 0 insertions, 2492 deletions
diff --git a/ffmpeg/libavcodec/vp3.c b/ffmpeg/libavcodec/vp3.c deleted file mode 100644 index 626642f..0000000 --- a/ffmpeg/libavcodec/vp3.c +++ /dev/null @@ -1,2492 +0,0 @@ -/* - * Copyright (C) 2003-2004 the ffmpeg project - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * On2 VP3 Video Decoder - * - * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx) - * For more information about the VP3 coding process, visit: - * http://wiki.multimedia.cx/index.php?title=On2_VP3 - * - * Theora decoder by Alex Beregszaszi - */ - -#include <stdio.h> -#include <stdlib.h> -#include <string.h> - -#include "libavutil/imgutils.h" -#include "avcodec.h" -#include "internal.h" -#include "dsputil.h" -#include "get_bits.h" -#include "hpeldsp.h" -#include "videodsp.h" -#include "vp3data.h" -#include "vp3dsp.h" -#include "xiph.h" -#include "thread.h" - -#define FRAGMENT_PIXELS 8 - -//FIXME split things out into their own arrays -typedef struct Vp3Fragment { - int16_t dc; - uint8_t coding_method; - uint8_t qpi; -} Vp3Fragment; - -#define SB_NOT_CODED 0 -#define SB_PARTIALLY_CODED 1 -#define SB_FULLY_CODED 2 - -// This is the maximum length of a single long bit run that can be encoded -// for superblock coding or block qps. Theora special-cases this to read a -// bit instead of flipping the current bit to allow for runs longer than 4129. -#define MAXIMUM_LONG_BIT_RUN 4129 - -#define MODE_INTER_NO_MV 0 -#define MODE_INTRA 1 -#define MODE_INTER_PLUS_MV 2 -#define MODE_INTER_LAST_MV 3 -#define MODE_INTER_PRIOR_LAST 4 -#define MODE_USING_GOLDEN 5 -#define MODE_GOLDEN_MV 6 -#define MODE_INTER_FOURMV 7 -#define CODING_MODE_COUNT 8 - -/* special internal mode */ -#define MODE_COPY 8 - -static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb); -static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb); - - -/* There are 6 preset schemes, plus a free-form scheme */ -static const int ModeAlphabet[6][CODING_MODE_COUNT] = -{ - /* scheme 1: Last motion vector dominates */ - { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, - MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, - MODE_INTRA, MODE_USING_GOLDEN, - MODE_GOLDEN_MV, MODE_INTER_FOURMV }, - - /* scheme 2 */ - { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, - MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, - MODE_INTRA, MODE_USING_GOLDEN, - MODE_GOLDEN_MV, MODE_INTER_FOURMV }, - - /* scheme 3 */ - { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, - MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, - MODE_INTRA, MODE_USING_GOLDEN, - MODE_GOLDEN_MV, MODE_INTER_FOURMV }, - - /* scheme 4 */ - { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, - MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, - MODE_INTRA, MODE_USING_GOLDEN, - MODE_GOLDEN_MV, MODE_INTER_FOURMV }, - - /* scheme 5: No motion vector dominates */ - { MODE_INTER_NO_MV, MODE_INTER_LAST_MV, - MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, - MODE_INTRA, MODE_USING_GOLDEN, - MODE_GOLDEN_MV, MODE_INTER_FOURMV }, - - /* scheme 6 */ - { MODE_INTER_NO_MV, MODE_USING_GOLDEN, - MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, - MODE_INTER_PLUS_MV, MODE_INTRA, - MODE_GOLDEN_MV, MODE_INTER_FOURMV }, - -}; - -static const uint8_t hilbert_offset[16][2] = { - {0,0}, {1,0}, {1,1}, {0,1}, - {0,2}, {0,3}, {1,3}, {1,2}, - {2,2}, {2,3}, {3,3}, {3,2}, - {3,1}, {2,1}, {2,0}, {3,0} -}; - -#define MIN_DEQUANT_VAL 2 - -typedef struct Vp3DecodeContext { - AVCodecContext *avctx; - int theora, theora_tables; - int version; - int width, height; - int chroma_x_shift, chroma_y_shift; - ThreadFrame golden_frame; - ThreadFrame last_frame; - ThreadFrame current_frame; - int keyframe; - uint8_t idct_permutation[64]; - uint8_t idct_scantable[64]; - HpelDSPContext hdsp; - VideoDSPContext vdsp; - VP3DSPContext vp3dsp; - DECLARE_ALIGNED(16, int16_t, block)[64]; - int flipped_image; - int last_slice_end; - int skip_loop_filter; - - int qps[3]; - int nqps; - int last_qps[3]; - - int superblock_count; - int y_superblock_width; - int y_superblock_height; - int y_superblock_count; - int c_superblock_width; - int c_superblock_height; - int c_superblock_count; - int u_superblock_start; - int v_superblock_start; - unsigned char *superblock_coding; - - int macroblock_count; - int macroblock_width; - int macroblock_height; - - int fragment_count; - int fragment_width[2]; - int fragment_height[2]; - - Vp3Fragment *all_fragments; - int fragment_start[3]; - int data_offset[3]; - - int8_t (*motion_val[2])[2]; - - /* tables */ - uint16_t coded_dc_scale_factor[64]; - uint32_t coded_ac_scale_factor[64]; - uint8_t base_matrix[384][64]; - uint8_t qr_count[2][3]; - uint8_t qr_size [2][3][64]; - uint16_t qr_base[2][3][64]; - - /** - * This is a list of all tokens in bitstream order. Reordering takes place - * by pulling from each level during IDCT. As a consequence, IDCT must be - * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32 - * otherwise. The 32 different tokens with up to 12 bits of extradata are - * collapsed into 3 types, packed as follows: - * (from the low to high bits) - * - * 2 bits: type (0,1,2) - * 0: EOB run, 14 bits for run length (12 needed) - * 1: zero run, 7 bits for run length - * 7 bits for the next coefficient (3 needed) - * 2: coefficient, 14 bits (11 needed) - * - * Coefficients are signed, so are packed in the highest bits for automatic - * sign extension. - */ - int16_t *dct_tokens[3][64]; - int16_t *dct_tokens_base; -#define TOKEN_EOB(eob_run) ((eob_run) << 2) -#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1) -#define TOKEN_COEFF(coeff) (((coeff) << 2) + 2) - - /** - * number of blocks that contain DCT coefficients at the given level or higher - */ - int num_coded_frags[3][64]; - int total_num_coded_frags; - - /* this is a list of indexes into the all_fragments array indicating - * which of the fragments are coded */ - int *coded_fragment_list[3]; - - VLC dc_vlc[16]; - VLC ac_vlc_1[16]; - VLC ac_vlc_2[16]; - VLC ac_vlc_3[16]; - VLC ac_vlc_4[16]; - - VLC superblock_run_length_vlc; - VLC fragment_run_length_vlc; - VLC mode_code_vlc; - VLC motion_vector_vlc; - - /* these arrays need to be on 16-byte boundaries since SSE2 operations - * index into them */ - DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane] - - /* This table contains superblock_count * 16 entries. Each set of 16 - * numbers corresponds to the fragment indexes 0..15 of the superblock. - * An entry will be -1 to indicate that no entry corresponds to that - * index. */ - int *superblock_fragments; - - /* This is an array that indicates how a particular macroblock - * is coded. */ - unsigned char *macroblock_coding; - - uint8_t *edge_emu_buffer; - - /* Huffman decode */ - int hti; - unsigned int hbits; - int entries; - int huff_code_size; - uint32_t huffman_table[80][32][2]; - - uint8_t filter_limit_values[64]; - DECLARE_ALIGNED(8, int, bounding_values_array)[256+2]; -} Vp3DecodeContext; - -/************************************************************************ - * VP3 specific functions - ************************************************************************/ - -static void vp3_decode_flush(AVCodecContext *avctx) -{ - Vp3DecodeContext *s = avctx->priv_data; - - if (s->golden_frame.f) - ff_thread_release_buffer(avctx, &s->golden_frame); - if (s->last_frame.f) - ff_thread_release_buffer(avctx, &s->last_frame); - if (s->current_frame.f) - ff_thread_release_buffer(avctx, &s->current_frame); -} - -static av_cold int vp3_decode_end(AVCodecContext *avctx) -{ - Vp3DecodeContext *s = avctx->priv_data; - int i; - - av_freep(&s->superblock_coding); - av_freep(&s->all_fragments); - av_freep(&s->coded_fragment_list[0]); - av_freep(&s->dct_tokens_base); - av_freep(&s->superblock_fragments); - av_freep(&s->macroblock_coding); - av_freep(&s->motion_val[0]); - av_freep(&s->motion_val[1]); - av_freep(&s->edge_emu_buffer); - - s->theora_tables = 0; - - /* release all frames */ - vp3_decode_flush(avctx); - av_frame_free(&s->current_frame.f); - av_frame_free(&s->last_frame.f); - av_frame_free(&s->golden_frame.f); - - if (avctx->internal->is_copy) - return 0; - - for (i = 0; i < 16; i++) { - ff_free_vlc(&s->dc_vlc[i]); - ff_free_vlc(&s->ac_vlc_1[i]); - ff_free_vlc(&s->ac_vlc_2[i]); - ff_free_vlc(&s->ac_vlc_3[i]); - ff_free_vlc(&s->ac_vlc_4[i]); - } - - ff_free_vlc(&s->superblock_run_length_vlc); - ff_free_vlc(&s->fragment_run_length_vlc); - ff_free_vlc(&s->mode_code_vlc); - ff_free_vlc(&s->motion_vector_vlc); - - - return 0; -} - -/** - * This function sets up all of the various blocks mappings: - * superblocks <-> fragments, macroblocks <-> fragments, - * superblocks <-> macroblocks - * - * @return 0 is successful; returns 1 if *anything* went wrong. - */ -static int init_block_mapping(Vp3DecodeContext *s) -{ - int sb_x, sb_y, plane; - int x, y, i, j = 0; - - for (plane = 0; plane < 3; plane++) { - int sb_width = plane ? s->c_superblock_width : s->y_superblock_width; - int sb_height = plane ? s->c_superblock_height : s->y_superblock_height; - int frag_width = s->fragment_width[!!plane]; - int frag_height = s->fragment_height[!!plane]; - - for (sb_y = 0; sb_y < sb_height; sb_y++) - for (sb_x = 0; sb_x < sb_width; sb_x++) - for (i = 0; i < 16; i++) { - x = 4*sb_x + hilbert_offset[i][0]; - y = 4*sb_y + hilbert_offset[i][1]; - - if (x < frag_width && y < frag_height) - s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x; - else - s->superblock_fragments[j++] = -1; - } - } - - return 0; /* successful path out */ -} - -/* - * This function sets up the dequantization tables used for a particular - * frame. - */ -static void init_dequantizer(Vp3DecodeContext *s, int qpi) -{ - int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]]; - int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]]; - int i, plane, inter, qri, bmi, bmj, qistart; - - for(inter=0; inter<2; inter++){ - for(plane=0; plane<3; plane++){ - int sum=0; - for(qri=0; qri<s->qr_count[inter][plane]; qri++){ - sum+= s->qr_size[inter][plane][qri]; - if(s->qps[qpi] <= sum) - break; - } - qistart= sum - s->qr_size[inter][plane][qri]; - bmi= s->qr_base[inter][plane][qri ]; - bmj= s->qr_base[inter][plane][qri+1]; - for(i=0; i<64; i++){ - int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i] - - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i] - + s->qr_size[inter][plane][qri]) - / (2*s->qr_size[inter][plane][qri]); - - int qmin= 8<<(inter + !i); - int qscale= i ? ac_scale_factor : dc_scale_factor; - - s->qmat[qpi][inter][plane][s->idct_permutation[i]] = - av_clip((qscale * coeff) / 100 * 4, qmin, 4096); - } - // all DC coefficients use the same quant so as not to interfere with DC prediction - s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0]; - } - } -} - -/* - * This function initializes the loop filter boundary limits if the frame's - * quality index is different from the previous frame's. - * - * The filter_limit_values may not be larger than 127. - */ -static void init_loop_filter(Vp3DecodeContext *s) -{ - int *bounding_values= s->bounding_values_array+127; - int filter_limit; - int x; - int value; - - filter_limit = s->filter_limit_values[s->qps[0]]; - av_assert0(filter_limit < 128U); - - /* set up the bounding values */ - memset(s->bounding_values_array, 0, 256 * sizeof(int)); - for (x = 0; x < filter_limit; x++) { - bounding_values[-x] = -x; - bounding_values[x] = x; - } - for (x = value = filter_limit; x < 128 && value; x++, value--) { - bounding_values[ x] = value; - bounding_values[-x] = -value; - } - if (value) - bounding_values[128] = value; - bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202; -} - -/* - * This function unpacks all of the superblock/macroblock/fragment coding - * information from the bitstream. - */ -static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) -{ - int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start }; - int bit = 0; - int current_superblock = 0; - int current_run = 0; - int num_partial_superblocks = 0; - - int i, j; - int current_fragment; - int plane; - - if (s->keyframe) { - memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); - - } else { - - /* unpack the list of partially-coded superblocks */ - bit = get_bits1(gb) ^ 1; - current_run = 0; - - while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) { - if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) - bit = get_bits1(gb); - else - bit ^= 1; - - current_run = get_vlc2(gb, - s->superblock_run_length_vlc.table, 6, 2) + 1; - if (current_run == 34) - current_run += get_bits(gb, 12); - - if (current_superblock + current_run > s->superblock_count) { - av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n"); - return -1; - } - - memset(s->superblock_coding + current_superblock, bit, current_run); - - current_superblock += current_run; - if (bit) - num_partial_superblocks += current_run; - } - - /* unpack the list of fully coded superblocks if any of the blocks were - * not marked as partially coded in the previous step */ - if (num_partial_superblocks < s->superblock_count) { - int superblocks_decoded = 0; - - current_superblock = 0; - bit = get_bits1(gb) ^ 1; - current_run = 0; - - while (superblocks_decoded < s->superblock_count - num_partial_superblocks - && get_bits_left(gb) > 0) { - - if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) - bit = get_bits1(gb); - else - bit ^= 1; - - current_run = get_vlc2(gb, - s->superblock_run_length_vlc.table, 6, 2) + 1; - if (current_run == 34) - current_run += get_bits(gb, 12); - - for (j = 0; j < current_run; current_superblock++) { - if (current_superblock >= s->superblock_count) { - av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n"); - return -1; - } - - /* skip any superblocks already marked as partially coded */ - if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { - s->superblock_coding[current_superblock] = 2*bit; - j++; - } - } - superblocks_decoded += current_run; - } - } - - /* if there were partial blocks, initialize bitstream for - * unpacking fragment codings */ - if (num_partial_superblocks) { - - current_run = 0; - bit = get_bits1(gb); - /* toggle the bit because as soon as the first run length is - * fetched the bit will be toggled again */ - bit ^= 1; - } - } - - /* figure out which fragments are coded; iterate through each - * superblock (all planes) */ - s->total_num_coded_frags = 0; - memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); - - for (plane = 0; plane < 3; plane++) { - int sb_start = superblock_starts[plane]; - int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count); - int num_coded_frags = 0; - - for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) { - - /* iterate through all 16 fragments in a superblock */ - for (j = 0; j < 16; j++) { - - /* if the fragment is in bounds, check its coding status */ - current_fragment = s->superblock_fragments[i * 16 + j]; - if (current_fragment != -1) { - int coded = s->superblock_coding[i]; - - if (s->superblock_coding[i] == SB_PARTIALLY_CODED) { - - /* fragment may or may not be coded; this is the case - * that cares about the fragment coding runs */ - if (current_run-- == 0) { - bit ^= 1; - current_run = get_vlc2(gb, - s->fragment_run_length_vlc.table, 5, 2); - } - coded = bit; - } - - if (coded) { - /* default mode; actual mode will be decoded in - * the next phase */ - s->all_fragments[current_fragment].coding_method = - MODE_INTER_NO_MV; - s->coded_fragment_list[plane][num_coded_frags++] = - current_fragment; - } else { - /* not coded; copy this fragment from the prior frame */ - s->all_fragments[current_fragment].coding_method = - MODE_COPY; - } - } - } - } - s->total_num_coded_frags += num_coded_frags; - for (i = 0; i < 64; i++) - s->num_coded_frags[plane][i] = num_coded_frags; - if (plane < 2) - s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags; - } - return 0; -} - -/* - * This function unpacks all the coding mode data for individual macroblocks - * from the bitstream. - */ -static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) -{ - int i, j, k, sb_x, sb_y; - int scheme; - int current_macroblock; - int current_fragment; - int coding_mode; - int custom_mode_alphabet[CODING_MODE_COUNT]; - const int *alphabet; - Vp3Fragment *frag; - - if (s->keyframe) { - for (i = 0; i < s->fragment_count; i++) - s->all_fragments[i].coding_method = MODE_INTRA; - - } else { - - /* fetch the mode coding scheme for this frame */ - scheme = get_bits(gb, 3); - - /* is it a custom coding scheme? */ - if (scheme == 0) { - for (i = 0; i < 8; i++) - custom_mode_alphabet[i] = MODE_INTER_NO_MV; - for (i = 0; i < 8; i++) - custom_mode_alphabet[get_bits(gb, 3)] = i; - alphabet = custom_mode_alphabet; - } else - alphabet = ModeAlphabet[scheme-1]; - - /* iterate through all of the macroblocks that contain 1 or more - * coded fragments */ - for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { - for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { - if (get_bits_left(gb) <= 0) - return -1; - - for (j = 0; j < 4; j++) { - int mb_x = 2*sb_x + (j>>1); - int mb_y = 2*sb_y + (((j>>1)+j)&1); - current_macroblock = mb_y * s->macroblock_width + mb_x; - - if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height) - continue; - -#define BLOCK_X (2*mb_x + (k&1)) -#define BLOCK_Y (2*mb_y + (k>>1)) - /* coding modes are only stored if the macroblock has at least one - * luma block coded, otherwise it must be INTER_NO_MV */ - for (k = 0; k < 4; k++) { - current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X; - if (s->all_fragments[current_fragment].coding_method != MODE_COPY) - break; - } - if (k == 4) { - s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV; - continue; - } - - /* mode 7 means get 3 bits for each coding mode */ - if (scheme == 7) - coding_mode = get_bits(gb, 3); - else - coding_mode = alphabet - [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; - - s->macroblock_coding[current_macroblock] = coding_mode; - for (k = 0; k < 4; k++) { - frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X; - if (frag->coding_method != MODE_COPY) - frag->coding_method = coding_mode; - } - -#define SET_CHROMA_MODES \ - if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \ - frag[s->fragment_start[1]].coding_method = coding_mode;\ - if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \ - frag[s->fragment_start[2]].coding_method = coding_mode; - - if (s->chroma_y_shift) { - frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x; - SET_CHROMA_MODES - } else if (s->chroma_x_shift) { - frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x; - for (k = 0; k < 2; k++) { - SET_CHROMA_MODES - frag += s->fragment_width[1]; - } - } else { - for (k = 0; k < 4; k++) { - frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X; - SET_CHROMA_MODES - } - } - } - } - } - } - - return 0; -} - -/* - * This function unpacks all the motion vectors for the individual - * macroblocks from the bitstream. - */ -static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) -{ - int j, k, sb_x, sb_y; - int coding_mode; - int motion_x[4]; - int motion_y[4]; - int last_motion_x = 0; - int last_motion_y = 0; - int prior_last_motion_x = 0; - int prior_last_motion_y = 0; - int current_macroblock; - int current_fragment; - int frag; - - if (s->keyframe) - return 0; - - /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */ - coding_mode = get_bits1(gb); - - /* iterate through all of the macroblocks that contain 1 or more - * coded fragments */ - for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { - for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { - if (get_bits_left(gb) <= 0) - return -1; - - for (j = 0; j < 4; j++) { - int mb_x = 2*sb_x + (j>>1); - int mb_y = 2*sb_y + (((j>>1)+j)&1); - current_macroblock = mb_y * s->macroblock_width + mb_x; - - if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height || - (s->macroblock_coding[current_macroblock] == MODE_COPY)) - continue; - - switch (s->macroblock_coding[current_macroblock]) { - - case MODE_INTER_PLUS_MV: - case MODE_GOLDEN_MV: - /* all 6 fragments use the same motion vector */ - if (coding_mode == 0) { - motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; - motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; - } else { - motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; - motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; - } - - /* vector maintenance, only on MODE_INTER_PLUS_MV */ - if (s->macroblock_coding[current_macroblock] == - MODE_INTER_PLUS_MV) { - prior_last_motion_x = last_motion_x; - prior_last_motion_y = last_motion_y; - last_motion_x = motion_x[0]; - last_motion_y = motion_y[0]; - } - break; - - case MODE_INTER_FOURMV: - /* vector maintenance */ - prior_last_motion_x = last_motion_x; - prior_last_motion_y = last_motion_y; - - /* fetch 4 vectors from the bitstream, one for each - * Y fragment, then average for the C fragment vectors */ - for (k = 0; k < 4; k++) { - current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X; - if (s->all_fragments[current_fragment].coding_method != MODE_COPY) { - if (coding_mode == 0) { - motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; - motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; - } else { - motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; - motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; - } - last_motion_x = motion_x[k]; - last_motion_y = motion_y[k]; - } else { - motion_x[k] = 0; - motion_y[k] = 0; - } - } - break; - - case MODE_INTER_LAST_MV: - /* all 6 fragments use the last motion vector */ - motion_x[0] = last_motion_x; - motion_y[0] = last_motion_y; - - /* no vector maintenance (last vector remains the - * last vector) */ - break; - - case MODE_INTER_PRIOR_LAST: - /* all 6 fragments use the motion vector prior to the - * last motion vector */ - motion_x[0] = prior_last_motion_x; - motion_y[0] = prior_last_motion_y; - - /* vector maintenance */ - prior_last_motion_x = last_motion_x; - prior_last_motion_y = last_motion_y; - last_motion_x = motion_x[0]; - last_motion_y = motion_y[0]; - break; - - default: - /* covers intra, inter without MV, golden without MV */ - motion_x[0] = 0; - motion_y[0] = 0; - - /* no vector maintenance */ - break; - } - - /* assign the motion vectors to the correct fragments */ - for (k = 0; k < 4; k++) { - current_fragment = - BLOCK_Y*s->fragment_width[0] + BLOCK_X; - if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { - s->motion_val[0][current_fragment][0] = motion_x[k]; - s->motion_val[0][current_fragment][1] = motion_y[k]; - } else { - s->motion_val[0][current_fragment][0] = motion_x[0]; - s->motion_val[0][current_fragment][1] = motion_y[0]; - } - } - - if (s->chroma_y_shift) { - if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { - motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2); - motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2); - } - motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1); - motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1); - frag = mb_y*s->fragment_width[1] + mb_x; - s->motion_val[1][frag][0] = motion_x[0]; - s->motion_val[1][frag][1] = motion_y[0]; - } else if (s->chroma_x_shift) { - if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { - motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1); - motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1); - motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1); - motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1); - } else { - motion_x[1] = motion_x[0]; - motion_y[1] = motion_y[0]; - } - motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1); - motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1); - - frag = 2*mb_y*s->fragment_width[1] + mb_x; - for (k = 0; k < 2; k++) { - s->motion_val[1][frag][0] = motion_x[k]; - s->motion_val[1][frag][1] = motion_y[k]; - frag += s->fragment_width[1]; - } - } else { - for (k = 0; k < 4; k++) { - frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X; - if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { - s->motion_val[1][frag][0] = motion_x[k]; - s->motion_val[1][frag][1] = motion_y[k]; - } else { - s->motion_val[1][frag][0] = motion_x[0]; - s->motion_val[1][frag][1] = motion_y[0]; - } - } - } - } - } - } - - return 0; -} - -static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb) -{ - int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi; - int num_blocks = s->total_num_coded_frags; - - for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) { - i = blocks_decoded = num_blocks_at_qpi = 0; - - bit = get_bits1(gb) ^ 1; - run_length = 0; - - do { - if (run_length == MAXIMUM_LONG_BIT_RUN) - bit = get_bits1(gb); - else - bit ^= 1; - - run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1; - if (run_length == 34) - run_length += get_bits(gb, 12); - blocks_decoded += run_length; - - if (!bit) - num_blocks_at_qpi += run_length; - - for (j = 0; j < run_length; i++) { - if (i >= s->total_num_coded_frags) - return -1; - - if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) { - s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit; - j++; - } - } - } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0); - - num_blocks -= num_blocks_at_qpi; - } - - return 0; -} - -/* - * This function is called by unpack_dct_coeffs() to extract the VLCs from - * the bitstream. The VLCs encode tokens which are used to unpack DCT - * data. This function unpacks all the VLCs for either the Y plane or both - * C planes, and is called for DC coefficients or different AC coefficient - * levels (since different coefficient types require different VLC tables. - * - * This function returns a residual eob run. E.g, if a particular token gave - * instructions to EOB the next 5 fragments and there were only 2 fragments - * left in the current fragment range, 3 would be returned so that it could - * be passed into the next call to this same function. - */ -static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, - VLC *table, int coeff_index, - int plane, - int eob_run) -{ - int i, j = 0; - int token; - int zero_run = 0; - int16_t coeff = 0; - int bits_to_get; - int blocks_ended; - int coeff_i = 0; - int num_coeffs = s->num_coded_frags[plane][coeff_index]; - int16_t *dct_tokens = s->dct_tokens[plane][coeff_index]; - - /* local references to structure members to avoid repeated deferences */ - int *coded_fragment_list = s->coded_fragment_list[plane]; - Vp3Fragment *all_fragments = s->all_fragments; - VLC_TYPE (*vlc_table)[2] = table->table; - - if (num_coeffs < 0) - av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index); - - if (eob_run > num_coeffs) { - coeff_i = blocks_ended = num_coeffs; - eob_run -= num_coeffs; - } else { - coeff_i = blocks_ended = eob_run; - eob_run = 0; - } - - // insert fake EOB token to cover the split between planes or zzi - if (blocks_ended) - dct_tokens[j++] = blocks_ended << 2; - - while (coeff_i < num_coeffs && get_bits_left(gb) > 0) { - /* decode a VLC into a token */ - token = get_vlc2(gb, vlc_table, 11, 3); - /* use the token to get a zero run, a coefficient, and an eob run */ - if ((unsigned) token <= 6U) { - eob_run = eob_run_base[token]; - if (eob_run_get_bits[token]) - eob_run += get_bits(gb, eob_run_get_bits[token]); - - // record only the number of blocks ended in this plane, - // any spill will be recorded in the next plane. - if (eob_run > num_coeffs - coeff_i) { - dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i); - blocks_ended += num_coeffs - coeff_i; - eob_run -= num_coeffs - coeff_i; - coeff_i = num_coeffs; - } else { - dct_tokens[j++] = TOKEN_EOB(eob_run); - blocks_ended += eob_run; - coeff_i += eob_run; - eob_run = 0; - } - } else if (token >= 0) { - bits_to_get = coeff_get_bits[token]; - if (bits_to_get) - bits_to_get = get_bits(gb, bits_to_get); - coeff = coeff_tables[token][bits_to_get]; - - zero_run = zero_run_base[token]; - if (zero_run_get_bits[token]) - zero_run += get_bits(gb, zero_run_get_bits[token]); - - if (zero_run) { - dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run); - } else { - // Save DC into the fragment structure. DC prediction is - // done in raster order, so the actual DC can't be in with - // other tokens. We still need the token in dct_tokens[] - // however, or else the structure collapses on itself. - if (!coeff_index) - all_fragments[coded_fragment_list[coeff_i]].dc = coeff; - - dct_tokens[j++] = TOKEN_COEFF(coeff); - } - - if (coeff_index + zero_run > 64) { - av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with" - " %d coeffs left\n", zero_run, 64-coeff_index); - zero_run = 64 - coeff_index; - } - - // zero runs code multiple coefficients, - // so don't try to decode coeffs for those higher levels - for (i = coeff_index+1; i <= coeff_index+zero_run; i++) - s->num_coded_frags[plane][i]--; - coeff_i++; - } else { - av_log(s->avctx, AV_LOG_ERROR, - "Invalid token %d\n", token); - return -1; - } - } - - if (blocks_ended > s->num_coded_frags[plane][coeff_index]) - av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n"); - - // decrement the number of blocks that have higher coeffecients for each - // EOB run at this level - if (blocks_ended) - for (i = coeff_index+1; i < 64; i++) - s->num_coded_frags[plane][i] -= blocks_ended; - - // setup the next buffer - if (plane < 2) - s->dct_tokens[plane+1][coeff_index] = dct_tokens + j; - else if (coeff_index < 63) - s->dct_tokens[0][coeff_index+1] = dct_tokens + j; - - return eob_run; -} - -static void reverse_dc_prediction(Vp3DecodeContext *s, - int first_fragment, - int fragment_width, - int fragment_height); -/* - * This function unpacks all of the DCT coefficient data from the - * bitstream. - */ -static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) -{ - int i; - int dc_y_table; - int dc_c_table; - int ac_y_table; - int ac_c_table; - int residual_eob_run = 0; - VLC *y_tables[64]; - VLC *c_tables[64]; - - s->dct_tokens[0][0] = s->dct_tokens_base; - - /* fetch the DC table indexes */ - dc_y_table = get_bits(gb, 4); - dc_c_table = get_bits(gb, 4); - - /* unpack the Y plane DC coefficients */ - residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, - 0, residual_eob_run); - if (residual_eob_run < 0) - return residual_eob_run; - - /* reverse prediction of the Y-plane DC coefficients */ - reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]); - - /* unpack the C plane DC coefficients */ - residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, - 1, residual_eob_run); - if (residual_eob_run < 0) - return residual_eob_run; - residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, - 2, residual_eob_run); - if (residual_eob_run < 0) - return residual_eob_run; - - /* reverse prediction of the C-plane DC coefficients */ - if (!(s->avctx->flags & CODEC_FLAG_GRAY)) - { - reverse_dc_prediction(s, s->fragment_start[1], - s->fragment_width[1], s->fragment_height[1]); - reverse_dc_prediction(s, s->fragment_start[2], - s->fragment_width[1], s->fragment_height[1]); - } - - /* fetch the AC table indexes */ - ac_y_table = get_bits(gb, 4); - ac_c_table = get_bits(gb, 4); - - /* build tables of AC VLC tables */ - for (i = 1; i <= 5; i++) { - y_tables[i] = &s->ac_vlc_1[ac_y_table]; - c_tables[i] = &s->ac_vlc_1[ac_c_table]; - } - for (i = 6; i <= 14; i++) { - y_tables[i] = &s->ac_vlc_2[ac_y_table]; - c_tables[i] = &s->ac_vlc_2[ac_c_table]; - } - for (i = 15; i <= 27; i++) { - y_tables[i] = &s->ac_vlc_3[ac_y_table]; - c_tables[i] = &s->ac_vlc_3[ac_c_table]; - } - for (i = 28; i <= 63; i++) { - y_tables[i] = &s->ac_vlc_4[ac_y_table]; - c_tables[i] = &s->ac_vlc_4[ac_c_table]; - } - - /* decode all AC coefficents */ - for (i = 1; i <= 63; i++) { - residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i, - 0, residual_eob_run); - if (residual_eob_run < 0) - return residual_eob_run; - - residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, - 1, residual_eob_run); - if (residual_eob_run < 0) - return residual_eob_run; - residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, - 2, residual_eob_run); - if (residual_eob_run < 0) - return residual_eob_run; - } - - return 0; -} - -/* - * This function reverses the DC prediction for each coded fragment in - * the frame. Much of this function is adapted directly from the original - * VP3 source code. - */ -#define COMPATIBLE_FRAME(x) \ - (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) -#define DC_COEFF(u) s->all_fragments[u].dc - -static void reverse_dc_prediction(Vp3DecodeContext *s, - int first_fragment, - int fragment_width, - int fragment_height) -{ - -#define PUL 8 -#define PU 4 -#define PUR 2 -#define PL 1 - - int x, y; - int i = first_fragment; - - int predicted_dc; - - /* DC values for the left, up-left, up, and up-right fragments */ - int vl, vul, vu, vur; - - /* indexes for the left, up-left, up, and up-right fragments */ - int l, ul, u, ur; - - /* - * The 6 fields mean: - * 0: up-left multiplier - * 1: up multiplier - * 2: up-right multiplier - * 3: left multiplier - */ - static const int predictor_transform[16][4] = { - { 0, 0, 0, 0}, - { 0, 0, 0,128}, // PL - { 0, 0,128, 0}, // PUR - { 0, 0, 53, 75}, // PUR|PL - { 0,128, 0, 0}, // PU - { 0, 64, 0, 64}, // PU|PL - { 0,128, 0, 0}, // PU|PUR - { 0, 0, 53, 75}, // PU|PUR|PL - {128, 0, 0, 0}, // PUL - { 0, 0, 0,128}, // PUL|PL - { 64, 0, 64, 0}, // PUL|PUR - { 0, 0, 53, 75}, // PUL|PUR|PL - { 0,128, 0, 0}, // PUL|PU - {-104,116, 0,116}, // PUL|PU|PL - { 24, 80, 24, 0}, // PUL|PU|PUR - {-104,116, 0,116} // PUL|PU|PUR|PL - }; - - /* This table shows which types of blocks can use other blocks for - * prediction. For example, INTRA is the only mode in this table to - * have a frame number of 0. That means INTRA blocks can only predict - * from other INTRA blocks. There are 2 golden frame coding types; - * blocks encoding in these modes can only predict from other blocks - * that were encoded with these 1 of these 2 modes. */ - static const unsigned char compatible_frame[9] = { - 1, /* MODE_INTER_NO_MV */ - 0, /* MODE_INTRA */ - 1, /* MODE_INTER_PLUS_MV */ - 1, /* MODE_INTER_LAST_MV */ - 1, /* MODE_INTER_PRIOR_MV */ - 2, /* MODE_USING_GOLDEN */ - 2, /* MODE_GOLDEN_MV */ - 1, /* MODE_INTER_FOUR_MV */ - 3 /* MODE_COPY */ - }; - int current_frame_type; - - /* there is a last DC predictor for each of the 3 frame types */ - short last_dc[3]; - - int transform = 0; - - vul = vu = vur = vl = 0; - last_dc[0] = last_dc[1] = last_dc[2] = 0; - - /* for each fragment row... */ - for (y = 0; y < fragment_height; y++) { - - /* for each fragment in a row... */ - for (x = 0; x < fragment_width; x++, i++) { - - /* reverse prediction if this block was coded */ - if (s->all_fragments[i].coding_method != MODE_COPY) { - - current_frame_type = - compatible_frame[s->all_fragments[i].coding_method]; - - transform= 0; - if(x){ - l= i-1; - vl = DC_COEFF(l); - if(COMPATIBLE_FRAME(l)) - transform |= PL; - } - if(y){ - u= i-fragment_width; - vu = DC_COEFF(u); - if(COMPATIBLE_FRAME(u)) - transform |= PU; - if(x){ - ul= i-fragment_width-1; - vul = DC_COEFF(ul); - if(COMPATIBLE_FRAME(ul)) - transform |= PUL; - } - if(x + 1 < fragment_width){ - ur= i-fragment_width+1; - vur = DC_COEFF(ur); - if(COMPATIBLE_FRAME(ur)) - transform |= PUR; - } - } - - if (transform == 0) { - - /* if there were no fragments to predict from, use last - * DC saved */ - predicted_dc = last_dc[current_frame_type]; - } else { - - /* apply the appropriate predictor transform */ - predicted_dc = - (predictor_transform[transform][0] * vul) + - (predictor_transform[transform][1] * vu) + - (predictor_transform[transform][2] * vur) + - (predictor_transform[transform][3] * vl); - - predicted_dc /= 128; - - /* check for outranging on the [ul u l] and - * [ul u ur l] predictors */ - if ((transform == 15) || (transform == 13)) { - if (FFABS(predicted_dc - vu) > 128) - predicted_dc = vu; - else if (FFABS(predicted_dc - vl) > 128) - predicted_dc = vl; - else if (FFABS(predicted_dc - vul) > 128) - predicted_dc = vul; - } - } - - /* at long last, apply the predictor */ - DC_COEFF(i) += predicted_dc; - /* save the DC */ - last_dc[current_frame_type] = DC_COEFF(i); - } - } - } -} - -static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend) -{ - int x, y; - int *bounding_values= s->bounding_values_array+127; - - int width = s->fragment_width[!!plane]; - int height = s->fragment_height[!!plane]; - int fragment = s->fragment_start [plane] + ystart * width; - ptrdiff_t stride = s->current_frame.f->linesize[plane]; - uint8_t *plane_data = s->current_frame.f->data [plane]; - if (!s->flipped_image) stride = -stride; - plane_data += s->data_offset[plane] + 8*ystart*stride; - - for (y = ystart; y < yend; y++) { - - for (x = 0; x < width; x++) { - /* This code basically just deblocks on the edges of coded blocks. - * However, it has to be much more complicated because of the - * braindamaged deblock ordering used in VP3/Theora. Order matters - * because some pixels get filtered twice. */ - if( s->all_fragments[fragment].coding_method != MODE_COPY ) - { - /* do not perform left edge filter for left columns frags */ - if (x > 0) { - s->vp3dsp.h_loop_filter( - plane_data + 8*x, - stride, bounding_values); - } - - /* do not perform top edge filter for top row fragments */ - if (y > 0) { - s->vp3dsp.v_loop_filter( - plane_data + 8*x, - stride, bounding_values); - } - - /* do not perform right edge filter for right column - * fragments or if right fragment neighbor is also coded - * in this frame (it will be filtered in next iteration) */ - if ((x < width - 1) && - (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) { - s->vp3dsp.h_loop_filter( - plane_data + 8*x + 8, - stride, bounding_values); - } - - /* do not perform bottom edge filter for bottom row - * fragments or if bottom fragment neighbor is also coded - * in this frame (it will be filtered in the next row) */ - if ((y < height - 1) && - (s->all_fragments[fragment + width].coding_method == MODE_COPY)) { - s->vp3dsp.v_loop_filter( - plane_data + 8*x + 8*stride, - stride, bounding_values); - } - } - - fragment++; - } - plane_data += 8*stride; - } -} - -/** - * Pull DCT tokens from the 64 levels to decode and dequant the coefficients - * for the next block in coding order - */ -static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, - int plane, int inter, int16_t block[64]) -{ - int16_t *dequantizer = s->qmat[frag->qpi][inter][plane]; - uint8_t *perm = s->idct_scantable; - int i = 0; - - do { - int token = *s->dct_tokens[plane][i]; - switch (token & 3) { - case 0: // EOB - if (--token < 4) // 0-3 are token types, so the EOB run must now be 0 - s->dct_tokens[plane][i]++; - else - *s->dct_tokens[plane][i] = token & ~3; - goto end; - case 1: // zero run - s->dct_tokens[plane][i]++; - i += (token >> 2) & 0x7f; - if (i > 63) { - av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n"); - return i; - } - block[perm[i]] = (token >> 9) * dequantizer[perm[i]]; - i++; - break; - case 2: // coeff - block[perm[i]] = (token >> 2) * dequantizer[perm[i]]; - s->dct_tokens[plane][i++]++; - break; - default: // shouldn't happen - return i; - } - } while (i < 64); - // return value is expected to be a valid level - i--; -end: - // the actual DC+prediction is in the fragment structure - block[0] = frag->dc * s->qmat[0][inter][plane][0]; - return i; -} - -/** - * called when all pixels up to row y are complete - */ -static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y) -{ - int h, cy, i; - int offset[AV_NUM_DATA_POINTERS]; - - if (HAVE_THREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) { - int y_flipped = s->flipped_image ? s->avctx->height-y : y; - - // At the end of the frame, report INT_MAX instead of the height of the frame. - // This makes the other threads' ff_thread_await_progress() calls cheaper, because - // they don't have to clip their values. - ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0); - } - - if(s->avctx->draw_horiz_band==NULL) - return; - - h= y - s->last_slice_end; - s->last_slice_end= y; - y -= h; - - if (!s->flipped_image) { - y = s->avctx->height - y - h; - } - - cy = y >> s->chroma_y_shift; - offset[0] = s->current_frame.f->linesize[0]*y; - offset[1] = s->current_frame.f->linesize[1]*cy; - offset[2] = s->current_frame.f->linesize[2]*cy; - for (i = 3; i < AV_NUM_DATA_POINTERS; i++) - offset[i] = 0; - - emms_c(); - s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h); -} - -/** - * Wait for the reference frame of the current fragment. - * The progress value is in luma pixel rows. - */ -static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y) -{ - ThreadFrame *ref_frame; - int ref_row; - int border = motion_y&1; - - if (fragment->coding_method == MODE_USING_GOLDEN || - fragment->coding_method == MODE_GOLDEN_MV) - ref_frame = &s->golden_frame; - else - ref_frame = &s->last_frame; - - ref_row = y + (motion_y>>1); - ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border); - - ff_thread_await_progress(ref_frame, ref_row, 0); -} - -/* - * Perform the final rendering for a particular slice of data. - * The slice number ranges from 0..(c_superblock_height - 1). - */ -static void render_slice(Vp3DecodeContext *s, int slice) -{ - int x, y, i, j, fragment; - int16_t *block = s->block; - int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; - int motion_halfpel_index; - uint8_t *motion_source; - int plane, first_pixel; - - if (slice >= s->c_superblock_height) - return; - - for (plane = 0; plane < 3; plane++) { - uint8_t *output_plane = s->current_frame.f->data [plane] + s->data_offset[plane]; - uint8_t * last_plane = s-> last_frame.f->data [plane] + s->data_offset[plane]; - uint8_t *golden_plane = s-> golden_frame.f->data [plane] + s->data_offset[plane]; - ptrdiff_t stride = s->current_frame.f->linesize[plane]; - int plane_width = s->width >> (plane && s->chroma_x_shift); - int plane_height = s->height >> (plane && s->chroma_y_shift); - int8_t (*motion_val)[2] = s->motion_val[!!plane]; - - int sb_x, sb_y = slice << (!plane && s->chroma_y_shift); - int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift); - int slice_width = plane ? s->c_superblock_width : s->y_superblock_width; - - int fragment_width = s->fragment_width[!!plane]; - int fragment_height = s->fragment_height[!!plane]; - int fragment_start = s->fragment_start[plane]; - int do_await = !plane && HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME); - - if (!s->flipped_image) stride = -stride; - if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY)) - continue; - - /* for each superblock row in the slice (both of them)... */ - for (; sb_y < slice_height; sb_y++) { - - /* for each superblock in a row... */ - for (sb_x = 0; sb_x < slice_width; sb_x++) { - - /* for each block in a superblock... */ - for (j = 0; j < 16; j++) { - x = 4*sb_x + hilbert_offset[j][0]; - y = 4*sb_y + hilbert_offset[j][1]; - fragment = y*fragment_width + x; - - i = fragment_start + fragment; - - // bounds check - if (x >= fragment_width || y >= fragment_height) - continue; - - first_pixel = 8*y*stride + 8*x; - - if (do_await && s->all_fragments[i].coding_method != MODE_INTRA) - await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift); - - /* transform if this block was coded */ - if (s->all_fragments[i].coding_method != MODE_COPY) { - if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) || - (s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) - motion_source= golden_plane; - else - motion_source= last_plane; - - motion_source += first_pixel; - motion_halfpel_index = 0; - - /* sort out the motion vector if this fragment is coded - * using a motion vector method */ - if ((s->all_fragments[i].coding_method > MODE_INTRA) && - (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { - int src_x, src_y; - motion_x = motion_val[fragment][0]; - motion_y = motion_val[fragment][1]; - - src_x= (motion_x>>1) + 8*x; - src_y= (motion_y>>1) + 8*y; - - motion_halfpel_index = motion_x & 0x01; - motion_source += (motion_x >> 1); - - motion_halfpel_index |= (motion_y & 0x01) << 1; - motion_source += ((motion_y >> 1) * stride); - - if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){ - uint8_t *temp= s->edge_emu_buffer; - if(stride<0) temp -= 8*stride; - - s->vdsp.emulated_edge_mc(temp, motion_source, - stride, stride, - 9, 9, src_x, src_y, - plane_width, - plane_height); - motion_source= temp; - } - } - - - /* first, take care of copying a block from either the - * previous or the golden frame */ - if (s->all_fragments[i].coding_method != MODE_INTRA) { - /* Note, it is possible to implement all MC cases with - put_no_rnd_pixels_l2 which would look more like the - VP3 source but this would be slower as - put_no_rnd_pixels_tab is better optimzed */ - if(motion_halfpel_index != 3){ - s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index]( - output_plane + first_pixel, - motion_source, stride, 8); - }else{ - int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1 - s->vp3dsp.put_no_rnd_pixels_l2( - output_plane + first_pixel, - motion_source - d, - motion_source + stride + 1 + d, - stride, 8); - } - } - - /* invert DCT and place (or add) in final output */ - - if (s->all_fragments[i].coding_method == MODE_INTRA) { - vp3_dequant(s, s->all_fragments + i, plane, 0, block); - s->vp3dsp.idct_put( - output_plane + first_pixel, - stride, - block); - } else { - if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) { - s->vp3dsp.idct_add( - output_plane + first_pixel, - stride, - block); - } else { - s->vp3dsp.idct_dc_add(output_plane + first_pixel, stride, block); - } - } - } else { - - /* copy directly from the previous frame */ - s->hdsp.put_pixels_tab[1][0]( - output_plane + first_pixel, - last_plane + first_pixel, - stride, 8); - - } - } - } - - // Filter up to the last row in the superblock row - if (!s->skip_loop_filter) - apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1)); - } - } - - /* this looks like a good place for slice dispatch... */ - /* algorithm: - * if (slice == s->macroblock_height - 1) - * dispatch (both last slice & 2nd-to-last slice); - * else if (slice > 0) - * dispatch (slice - 1); - */ - - vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16)); -} - -/// Allocate tables for per-frame data in Vp3DecodeContext -static av_cold int allocate_tables(AVCodecContext *avctx) -{ - Vp3DecodeContext *s = avctx->priv_data; - int y_fragment_count, c_fragment_count; - - y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; - c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; - - s->superblock_coding = av_mallocz(s->superblock_count); - s->all_fragments = av_mallocz(s->fragment_count * sizeof(Vp3Fragment)); - s->coded_fragment_list[0] = av_mallocz(s->fragment_count * sizeof(int)); - s->dct_tokens_base = av_mallocz(64*s->fragment_count * sizeof(*s->dct_tokens_base)); - s->motion_val[0] = av_mallocz(y_fragment_count * sizeof(*s->motion_val[0])); - s->motion_val[1] = av_mallocz(c_fragment_count * sizeof(*s->motion_val[1])); - - /* work out the block mapping tables */ - s->superblock_fragments = av_mallocz(s->superblock_count * 16 * sizeof(int)); - s->macroblock_coding = av_mallocz(s->macroblock_count + 1); - - if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base || - !s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding || - !s->motion_val[0] || !s->motion_val[1]) { - vp3_decode_end(avctx); - return -1; - } - - init_block_mapping(s); - - return 0; -} - -static av_cold int init_frames(Vp3DecodeContext *s) -{ - s->current_frame.f = av_frame_alloc(); - s->last_frame.f = av_frame_alloc(); - s->golden_frame.f = av_frame_alloc(); - - if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) { - av_frame_free(&s->current_frame.f); - av_frame_free(&s->last_frame.f); - av_frame_free(&s->golden_frame.f); - return AVERROR(ENOMEM); - } - - return 0; -} - -static av_cold int vp3_decode_init(AVCodecContext *avctx) -{ - Vp3DecodeContext *s = avctx->priv_data; - int i, inter, plane, ret; - int c_width; - int c_height; - int y_fragment_count, c_fragment_count; - - ret = init_frames(s); - if (ret < 0) - return ret; - - avctx->internal->allocate_progress = 1; - - if (avctx->codec_tag == MKTAG('V','P','3','0')) - s->version = 0; - else - s->version = 1; - - s->avctx = avctx; - s->width = FFALIGN(avctx->width, 16); - s->height = FFALIGN(avctx->height, 16); - if (avctx->codec_id != AV_CODEC_ID_THEORA) - avctx->pix_fmt = AV_PIX_FMT_YUV420P; - avctx->chroma_sample_location = AVCHROMA_LOC_CENTER; - ff_hpeldsp_init(&s->hdsp, avctx->flags | CODEC_FLAG_BITEXACT); - ff_videodsp_init(&s->vdsp, 8); - ff_vp3dsp_init(&s->vp3dsp, avctx->flags); - - for (i = 0; i < 64; i++) { -#define T(x) (x >> 3) | ((x & 7) << 3) - s->idct_permutation[i] = T(i); - s->idct_scantable[i] = T(ff_zigzag_direct[i]); -#undef T - } - - /* initialize to an impossible value which will force a recalculation - * in the first frame decode */ - for (i = 0; i < 3; i++) - s->qps[i] = -1; - - avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); - - s->y_superblock_width = (s->width + 31) / 32; - s->y_superblock_height = (s->height + 31) / 32; - s->y_superblock_count = s->y_superblock_width * s->y_superblock_height; - - /* work out the dimensions for the C planes */ - c_width = s->width >> s->chroma_x_shift; - c_height = s->height >> s->chroma_y_shift; - s->c_superblock_width = (c_width + 31) / 32; - s->c_superblock_height = (c_height + 31) / 32; - s->c_superblock_count = s->c_superblock_width * s->c_superblock_height; - - s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2); - s->u_superblock_start = s->y_superblock_count; - s->v_superblock_start = s->u_superblock_start + s->c_superblock_count; - - s->macroblock_width = (s->width + 15) / 16; - s->macroblock_height = (s->height + 15) / 16; - s->macroblock_count = s->macroblock_width * s->macroblock_height; - - s->fragment_width[0] = s->width / FRAGMENT_PIXELS; - s->fragment_height[0] = s->height / FRAGMENT_PIXELS; - s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift; - s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift; - - /* fragment count covers all 8x8 blocks for all 3 planes */ - y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; - c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; - s->fragment_count = y_fragment_count + 2*c_fragment_count; - s->fragment_start[1] = y_fragment_count; - s->fragment_start[2] = y_fragment_count + c_fragment_count; - - if (!s->theora_tables) - { - for (i = 0; i < 64; i++) { - s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i]; - s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i]; - s->base_matrix[0][i] = vp31_intra_y_dequant[i]; - s->base_matrix[1][i] = vp31_intra_c_dequant[i]; - s->base_matrix[2][i] = vp31_inter_dequant[i]; - s->filter_limit_values[i] = vp31_filter_limit_values[i]; - } - - for(inter=0; inter<2; inter++){ - for(plane=0; plane<3; plane++){ - s->qr_count[inter][plane]= 1; - s->qr_size [inter][plane][0]= 63; - s->qr_base [inter][plane][0]= - s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter; - } - } - - /* init VLC tables */ - for (i = 0; i < 16; i++) { - - /* DC histograms */ - init_vlc(&s->dc_vlc[i], 11, 32, - &dc_bias[i][0][1], 4, 2, - &dc_bias[i][0][0], 4, 2, 0); - - /* group 1 AC histograms */ - init_vlc(&s->ac_vlc_1[i], 11, 32, - &ac_bias_0[i][0][1], 4, 2, - &ac_bias_0[i][0][0], 4, 2, 0); - - /* group 2 AC histograms */ - init_vlc(&s->ac_vlc_2[i], 11, 32, - &ac_bias_1[i][0][1], 4, 2, - &ac_bias_1[i][0][0], 4, 2, 0); - - /* group 3 AC histograms */ - init_vlc(&s->ac_vlc_3[i], 11, 32, - &ac_bias_2[i][0][1], 4, 2, - &ac_bias_2[i][0][0], 4, 2, 0); - - /* group 4 AC histograms */ - init_vlc(&s->ac_vlc_4[i], 11, 32, - &ac_bias_3[i][0][1], 4, 2, - &ac_bias_3[i][0][0], 4, 2, 0); - } - } else { - - for (i = 0; i < 16; i++) { - /* DC histograms */ - if (init_vlc(&s->dc_vlc[i], 11, 32, - &s->huffman_table[i][0][1], 8, 4, - &s->huffman_table[i][0][0], 8, 4, 0) < 0) - goto vlc_fail; - - /* group 1 AC histograms */ - if (init_vlc(&s->ac_vlc_1[i], 11, 32, - &s->huffman_table[i+16][0][1], 8, 4, - &s->huffman_table[i+16][0][0], 8, 4, 0) < 0) - goto vlc_fail; - - /* group 2 AC histograms */ - if (init_vlc(&s->ac_vlc_2[i], 11, 32, - &s->huffman_table[i+16*2][0][1], 8, 4, - &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0) - goto vlc_fail; - - /* group 3 AC histograms */ - if (init_vlc(&s->ac_vlc_3[i], 11, 32, - &s->huffman_table[i+16*3][0][1], 8, 4, - &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0) - goto vlc_fail; - - /* group 4 AC histograms */ - if (init_vlc(&s->ac_vlc_4[i], 11, 32, - &s->huffman_table[i+16*4][0][1], 8, 4, - &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0) - goto vlc_fail; - } - } - - init_vlc(&s->superblock_run_length_vlc, 6, 34, - &superblock_run_length_vlc_table[0][1], 4, 2, - &superblock_run_length_vlc_table[0][0], 4, 2, 0); - - init_vlc(&s->fragment_run_length_vlc, 5, 30, - &fragment_run_length_vlc_table[0][1], 4, 2, - &fragment_run_length_vlc_table[0][0], 4, 2, 0); - - init_vlc(&s->mode_code_vlc, 3, 8, - &mode_code_vlc_table[0][1], 2, 1, - &mode_code_vlc_table[0][0], 2, 1, 0); - - init_vlc(&s->motion_vector_vlc, 6, 63, - &motion_vector_vlc_table[0][1], 2, 1, - &motion_vector_vlc_table[0][0], 2, 1, 0); - - return allocate_tables(avctx); - -vlc_fail: - av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n"); - return -1; -} - -/// Release and shuffle frames after decode finishes -static int update_frames(AVCodecContext *avctx) -{ - Vp3DecodeContext *s = avctx->priv_data; - int ret = 0; - - - /* shuffle frames (last = current) */ - ff_thread_release_buffer(avctx, &s->last_frame); - ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame); - if (ret < 0) - goto fail; - - if (s->keyframe) { - ff_thread_release_buffer(avctx, &s->golden_frame); - ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame); - } - -fail: - ff_thread_release_buffer(avctx, &s->current_frame); - return ret; -} - -static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src) -{ - ff_thread_release_buffer(s->avctx, dst); - if (src->f->data[0]) - return ff_thread_ref_frame(dst, src); - return 0; -} - -static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src) -{ - int ret; - if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 || - (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 || - (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0) - return ret; - return 0; -} - -static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) -{ - Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data; - int qps_changed = 0, i, err; - -#define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field) - - if (!s1->current_frame.f->data[0] - ||s->width != s1->width - ||s->height!= s1->height) { - if (s != s1) - ref_frames(s, s1); - return -1; - } - - if (s != s1) { - // init tables if the first frame hasn't been decoded - if (!s->current_frame.f->data[0]) { - int y_fragment_count, c_fragment_count; - s->avctx = dst; - err = allocate_tables(dst); - if (err) - return err; - y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; - c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; - memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0])); - memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1])); - } - - // copy previous frame data - if ((err = ref_frames(s, s1)) < 0) - return err; - - s->keyframe = s1->keyframe; - - // copy qscale data if necessary - for (i = 0; i < 3; i++) { - if (s->qps[i] != s1->qps[1]) { - qps_changed = 1; - memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i])); - } - } - - if (s->qps[0] != s1->qps[0]) - memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array)); - - if (qps_changed) - copy_fields(s, s1, qps, superblock_count); -#undef copy_fields - } - - return update_frames(dst); -} - -static int vp3_decode_frame(AVCodecContext *avctx, - void *data, int *got_frame, - AVPacket *avpkt) -{ - const uint8_t *buf = avpkt->data; - int buf_size = avpkt->size; - Vp3DecodeContext *s = avctx->priv_data; - GetBitContext gb; - int i, ret; - - init_get_bits(&gb, buf, buf_size * 8); - -#if CONFIG_THEORA_DECODER - if (s->theora && get_bits1(&gb)) - { - int type = get_bits(&gb, 7); - skip_bits_long(&gb, 6*8); /* "theora" */ - - if (s->avctx->active_thread_type&FF_THREAD_FRAME) { - av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n"); - return AVERROR_PATCHWELCOME; - } - if (type == 0) { - vp3_decode_end(avctx); - ret = theora_decode_header(avctx, &gb); - - if (ret < 0) { - vp3_decode_end(avctx); - } else - ret = vp3_decode_init(avctx); - return ret; - } else if (type == 2) { - ret = theora_decode_tables(avctx, &gb); - if (ret < 0) { - vp3_decode_end(avctx); - } else - ret = vp3_decode_init(avctx); - return ret; - } - - av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n"); - return -1; - } -#endif - - s->keyframe = !get_bits1(&gb); - if (!s->all_fragments) { - av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n"); - return -1; - } - if (!s->theora) - skip_bits(&gb, 1); - for (i = 0; i < 3; i++) - s->last_qps[i] = s->qps[i]; - - s->nqps=0; - do{ - s->qps[s->nqps++]= get_bits(&gb, 6); - } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb)); - for (i = s->nqps; i < 3; i++) - s->qps[i] = -1; - - if (s->avctx->debug & FF_DEBUG_PICT_INFO) - av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n", - s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]); - - s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] || - avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY); - - if (s->qps[0] != s->last_qps[0]) - init_loop_filter(s); - - for (i = 0; i < s->nqps; i++) - // reinit all dequantizers if the first one changed, because - // the DC of the first quantizer must be used for all matrices - if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0]) - init_dequantizer(s, i); - - if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe) - return buf_size; - - s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; - s->current_frame.f->key_frame = s->keyframe; - if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0) - goto error; - - if (!s->edge_emu_buffer) - s->edge_emu_buffer = av_malloc(9*FFABS(s->current_frame.f->linesize[0])); - - if (s->keyframe) { - if (!s->theora) - { - skip_bits(&gb, 4); /* width code */ - skip_bits(&gb, 4); /* height code */ - if (s->version) - { - s->version = get_bits(&gb, 5); - if (avctx->frame_number == 0) - av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version); - } - } - if (s->version || s->theora) - { - if (get_bits1(&gb)) - av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n"); - skip_bits(&gb, 2); /* reserved? */ - } - } else { - if (!s->golden_frame.f->data[0]) { - av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n"); - - s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I; - if (ff_thread_get_buffer(avctx, &s->golden_frame, AV_GET_BUFFER_FLAG_REF) < 0) - goto error; - ff_thread_release_buffer(avctx, &s->last_frame); - if ((ret = ff_thread_ref_frame(&s->last_frame, &s->golden_frame)) < 0) - goto error; - ff_thread_report_progress(&s->last_frame, INT_MAX, 0); - } - } - - memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment)); - ff_thread_finish_setup(avctx); - - if (unpack_superblocks(s, &gb)){ - av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n"); - goto error; - } - if (unpack_modes(s, &gb)){ - av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n"); - goto error; - } - if (unpack_vectors(s, &gb)){ - av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n"); - goto error; - } - if (unpack_block_qpis(s, &gb)){ - av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n"); - goto error; - } - if (unpack_dct_coeffs(s, &gb)){ - av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n"); - goto error; - } - - for (i = 0; i < 3; i++) { - int height = s->height >> (i && s->chroma_y_shift); - if (s->flipped_image) - s->data_offset[i] = 0; - else - s->data_offset[i] = (height-1) * s->current_frame.f->linesize[i]; - } - - s->last_slice_end = 0; - for (i = 0; i < s->c_superblock_height; i++) - render_slice(s, i); - - // filter the last row - for (i = 0; i < 3; i++) { - int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1; - apply_loop_filter(s, i, row, row+1); - } - vp3_draw_horiz_band(s, s->avctx->height); - - if ((ret = av_frame_ref(data, s->current_frame.f)) < 0) - return ret; - *got_frame = 1; - - if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME)) { - ret = update_frames(avctx); - if (ret < 0) - return ret; - } - - return buf_size; - -error: - ff_thread_report_progress(&s->current_frame, INT_MAX, 0); - - if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME)) - av_frame_unref(s->current_frame.f); - - return -1; -} - -static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb) -{ - Vp3DecodeContext *s = avctx->priv_data; - - if (get_bits1(gb)) { - int token; - if (s->entries >= 32) { /* overflow */ - av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); - return -1; - } - token = get_bits(gb, 5); - av_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n", - s->hti, s->hbits, token, s->entries, s->huff_code_size); - s->huffman_table[s->hti][token][0] = s->hbits; - s->huffman_table[s->hti][token][1] = s->huff_code_size; - s->entries++; - } - else { - if (s->huff_code_size >= 32) {/* overflow */ - av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); - return -1; - } - s->huff_code_size++; - s->hbits <<= 1; - if (read_huffman_tree(avctx, gb)) - return -1; - s->hbits |= 1; - if (read_huffman_tree(avctx, gb)) - return -1; - s->hbits >>= 1; - s->huff_code_size--; - } - return 0; -} - -static int vp3_init_thread_copy(AVCodecContext *avctx) -{ - Vp3DecodeContext *s = avctx->priv_data; - - s->superblock_coding = NULL; - s->all_fragments = NULL; - s->coded_fragment_list[0] = NULL; - s->dct_tokens_base = NULL; - s->superblock_fragments = NULL; - s->macroblock_coding = NULL; - s->motion_val[0] = NULL; - s->motion_val[1] = NULL; - s->edge_emu_buffer = NULL; - - return init_frames(s); -} - -#if CONFIG_THEORA_DECODER -static const enum AVPixelFormat theora_pix_fmts[4] = { - AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P -}; - -static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb) -{ - Vp3DecodeContext *s = avctx->priv_data; - int visible_width, visible_height, colorspace; - int offset_x = 0, offset_y = 0; - int ret; - AVRational fps, aspect; - - s->theora = get_bits_long(gb, 24); - av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora); - - /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */ - /* but previous versions have the image flipped relative to vp3 */ - if (s->theora < 0x030200) - { - s->flipped_image = 1; - av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n"); - } - - visible_width = s->width = get_bits(gb, 16) << 4; - visible_height = s->height = get_bits(gb, 16) << 4; - - if (s->theora >= 0x030200) { - visible_width = get_bits_long(gb, 24); - visible_height = get_bits_long(gb, 24); - - offset_x = get_bits(gb, 8); /* offset x */ - offset_y = get_bits(gb, 8); /* offset y, from bottom */ - } - - fps.num = get_bits_long(gb, 32); - fps.den = get_bits_long(gb, 32); - if (fps.num && fps.den) { - if (fps.num < 0 || fps.den < 0) { - av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n"); - return AVERROR_INVALIDDATA; - } - av_reduce(&avctx->time_base.num, &avctx->time_base.den, - fps.den, fps.num, 1<<30); - } - - aspect.num = get_bits_long(gb, 24); - aspect.den = get_bits_long(gb, 24); - if (aspect.num && aspect.den) { - av_reduce(&avctx->sample_aspect_ratio.num, - &avctx->sample_aspect_ratio.den, - aspect.num, aspect.den, 1<<30); - } - - if (s->theora < 0x030200) - skip_bits(gb, 5); /* keyframe frequency force */ - colorspace = get_bits(gb, 8); - skip_bits(gb, 24); /* bitrate */ - - skip_bits(gb, 6); /* quality hint */ - - if (s->theora >= 0x030200) - { - skip_bits(gb, 5); /* keyframe frequency force */ - avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)]; - if (avctx->pix_fmt == AV_PIX_FMT_NONE) { - av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n"); - return AVERROR_INVALIDDATA; - } - skip_bits(gb, 3); /* reserved */ - } - -// align_get_bits(gb); - - if ( visible_width <= s->width && visible_width > s->width-16 - && visible_height <= s->height && visible_height > s->height-16 - && !offset_x && (offset_y == s->height - visible_height)) - ret = ff_set_dimensions(avctx, visible_width, visible_height); - else - ret = ff_set_dimensions(avctx, s->width, s->height); - if (ret < 0) - return ret; - - if (colorspace == 1) { - avctx->color_primaries = AVCOL_PRI_BT470M; - } else if (colorspace == 2) { - avctx->color_primaries = AVCOL_PRI_BT470BG; - } - if (colorspace == 1 || colorspace == 2) { - avctx->colorspace = AVCOL_SPC_BT470BG; - avctx->color_trc = AVCOL_TRC_BT709; - } - - return 0; -} - -static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb) -{ - Vp3DecodeContext *s = avctx->priv_data; - int i, n, matrices, inter, plane; - - if (s->theora >= 0x030200) { - n = get_bits(gb, 3); - /* loop filter limit values table */ - if (n) - for (i = 0; i < 64; i++) - s->filter_limit_values[i] = get_bits(gb, n); - } - - if (s->theora >= 0x030200) - n = get_bits(gb, 4) + 1; - else - n = 16; - /* quality threshold table */ - for (i = 0; i < 64; i++) - s->coded_ac_scale_factor[i] = get_bits(gb, n); - - if (s->theora >= 0x030200) - n = get_bits(gb, 4) + 1; - else - n = 16; - /* dc scale factor table */ - for (i = 0; i < 64; i++) - s->coded_dc_scale_factor[i] = get_bits(gb, n); - - if (s->theora >= 0x030200) - matrices = get_bits(gb, 9) + 1; - else - matrices = 3; - - if(matrices > 384){ - av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n"); - return -1; - } - - for(n=0; n<matrices; n++){ - for (i = 0; i < 64; i++) - s->base_matrix[n][i]= get_bits(gb, 8); - } - - for (inter = 0; inter <= 1; inter++) { - for (plane = 0; plane <= 2; plane++) { - int newqr= 1; - if (inter || plane > 0) - newqr = get_bits1(gb); - if (!newqr) { - int qtj, plj; - if(inter && get_bits1(gb)){ - qtj = 0; - plj = plane; - }else{ - qtj= (3*inter + plane - 1) / 3; - plj= (plane + 2) % 3; - } - s->qr_count[inter][plane]= s->qr_count[qtj][plj]; - memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0])); - memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0])); - } else { - int qri= 0; - int qi = 0; - - for(;;){ - i= get_bits(gb, av_log2(matrices-1)+1); - if(i>= matrices){ - av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n"); - return -1; - } - s->qr_base[inter][plane][qri]= i; - if(qi >= 63) - break; - i = get_bits(gb, av_log2(63-qi)+1) + 1; - s->qr_size[inter][plane][qri++]= i; - qi += i; - } - - if (qi > 63) { - av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi); - return -1; - } - s->qr_count[inter][plane]= qri; - } - } - } - - /* Huffman tables */ - for (s->hti = 0; s->hti < 80; s->hti++) { - s->entries = 0; - s->huff_code_size = 1; - if (!get_bits1(gb)) { - s->hbits = 0; - if(read_huffman_tree(avctx, gb)) - return -1; - s->hbits = 1; - if(read_huffman_tree(avctx, gb)) - return -1; - } - } - - s->theora_tables = 1; - - return 0; -} - -static av_cold int theora_decode_init(AVCodecContext *avctx) -{ - Vp3DecodeContext *s = avctx->priv_data; - GetBitContext gb; - int ptype; - uint8_t *header_start[3]; - int header_len[3]; - int i; - - avctx->pix_fmt = AV_PIX_FMT_YUV420P; - - s->theora = 1; - - if (!avctx->extradata_size) - { - av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n"); - return -1; - } - - if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size, - 42, header_start, header_len) < 0) { - av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n"); - return -1; - } - - for(i=0;i<3;i++) { - if (header_len[i] <= 0) - continue; - init_get_bits(&gb, header_start[i], header_len[i] * 8); - - ptype = get_bits(&gb, 8); - - if (!(ptype & 0x80)) - { - av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n"); -// return -1; - } - - // FIXME: Check for this as well. - skip_bits_long(&gb, 6*8); /* "theora" */ - - switch(ptype) - { - case 0x80: - if (theora_decode_header(avctx, &gb) < 0) - return -1; - break; - case 0x81: -// FIXME: is this needed? it breaks sometimes -// theora_decode_comments(avctx, gb); - break; - case 0x82: - if (theora_decode_tables(avctx, &gb)) - return -1; - break; - default: - av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80); - break; - } - if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb)) - av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype); - if (s->theora < 0x030200) - break; - } - - return vp3_decode_init(avctx); -} - -AVCodec ff_theora_decoder = { - .name = "theora", - .long_name = NULL_IF_CONFIG_SMALL("Theora"), - .type = AVMEDIA_TYPE_VIDEO, - .id = AV_CODEC_ID_THEORA, - .priv_data_size = sizeof(Vp3DecodeContext), - .init = theora_decode_init, - .close = vp3_decode_end, - .decode = vp3_decode_frame, - .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | - CODEC_CAP_FRAME_THREADS, - .flush = vp3_decode_flush, - .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy), - .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context) -}; -#endif - -AVCodec ff_vp3_decoder = { - .name = "vp3", - .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"), - .type = AVMEDIA_TYPE_VIDEO, - .id = AV_CODEC_ID_VP3, - .priv_data_size = sizeof(Vp3DecodeContext), - .init = vp3_decode_init, - .close = vp3_decode_end, - .decode = vp3_decode_frame, - .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | - CODEC_CAP_FRAME_THREADS, - .flush = vp3_decode_flush, - .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy), - .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context), -}; |
