diff options
| author | Tim Redfern <tim@eclectronics.org> | 2013-09-05 17:57:22 +0100 |
|---|---|---|
| committer | Tim Redfern <tim@eclectronics.org> | 2013-09-05 17:57:22 +0100 |
| commit | 8992cb1d0d07edc33d274f6d7924ecdf6f83d994 (patch) | |
| tree | 3a2c86846b7eec8137c1507e623fc7018f13d453 /ffmpeg/libavcodec/vp3.c | |
| parent | 741fb4b9e135cfb161a749db88713229038577bb (diff) | |
making act segmenter
Diffstat (limited to 'ffmpeg/libavcodec/vp3.c')
| -rw-r--r-- | ffmpeg/libavcodec/vp3.c | 2486 |
1 files changed, 2486 insertions, 0 deletions
diff --git a/ffmpeg/libavcodec/vp3.c b/ffmpeg/libavcodec/vp3.c new file mode 100644 index 0000000..1e76786 --- /dev/null +++ b/ffmpeg/libavcodec/vp3.c @@ -0,0 +1,2486 @@ +/* + * Copyright (C) 2003-2004 the ffmpeg project + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file + * On2 VP3 Video Decoder + * + * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx) + * For more information about the VP3 coding process, visit: + * http://wiki.multimedia.cx/index.php?title=On2_VP3 + * + * Theora decoder by Alex Beregszaszi + */ + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +#include "libavutil/imgutils.h" +#include "avcodec.h" +#include "internal.h" +#include "dsputil.h" +#include "get_bits.h" +#include "hpeldsp.h" +#include "videodsp.h" +#include "vp3data.h" +#include "vp3dsp.h" +#include "xiph.h" +#include "thread.h" + +#define FRAGMENT_PIXELS 8 + +//FIXME split things out into their own arrays +typedef struct Vp3Fragment { + int16_t dc; + uint8_t coding_method; + uint8_t qpi; +} Vp3Fragment; + +#define SB_NOT_CODED 0 +#define SB_PARTIALLY_CODED 1 +#define SB_FULLY_CODED 2 + +// This is the maximum length of a single long bit run that can be encoded +// for superblock coding or block qps. Theora special-cases this to read a +// bit instead of flipping the current bit to allow for runs longer than 4129. +#define MAXIMUM_LONG_BIT_RUN 4129 + +#define MODE_INTER_NO_MV 0 +#define MODE_INTRA 1 +#define MODE_INTER_PLUS_MV 2 +#define MODE_INTER_LAST_MV 3 +#define MODE_INTER_PRIOR_LAST 4 +#define MODE_USING_GOLDEN 5 +#define MODE_GOLDEN_MV 6 +#define MODE_INTER_FOURMV 7 +#define CODING_MODE_COUNT 8 + +/* special internal mode */ +#define MODE_COPY 8 + +static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb); +static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb); + + +/* There are 6 preset schemes, plus a free-form scheme */ +static const int ModeAlphabet[6][CODING_MODE_COUNT] = +{ + /* scheme 1: Last motion vector dominates */ + { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, + MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 2 */ + { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, + MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 3 */ + { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, + MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 4 */ + { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, + MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 5: No motion vector dominates */ + { MODE_INTER_NO_MV, MODE_INTER_LAST_MV, + MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 6 */ + { MODE_INTER_NO_MV, MODE_USING_GOLDEN, + MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, + MODE_INTER_PLUS_MV, MODE_INTRA, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + +}; + +static const uint8_t hilbert_offset[16][2] = { + {0,0}, {1,0}, {1,1}, {0,1}, + {0,2}, {0,3}, {1,3}, {1,2}, + {2,2}, {2,3}, {3,3}, {3,2}, + {3,1}, {2,1}, {2,0}, {3,0} +}; + +#define MIN_DEQUANT_VAL 2 + +typedef struct Vp3DecodeContext { + AVCodecContext *avctx; + int theora, theora_tables; + int version; + int width, height; + int chroma_x_shift, chroma_y_shift; + ThreadFrame golden_frame; + ThreadFrame last_frame; + ThreadFrame current_frame; + int keyframe; + uint8_t idct_permutation[64]; + uint8_t idct_scantable[64]; + HpelDSPContext hdsp; + VideoDSPContext vdsp; + VP3DSPContext vp3dsp; + DECLARE_ALIGNED(16, int16_t, block)[64]; + int flipped_image; + int last_slice_end; + int skip_loop_filter; + + int qps[3]; + int nqps; + int last_qps[3]; + + int superblock_count; + int y_superblock_width; + int y_superblock_height; + int y_superblock_count; + int c_superblock_width; + int c_superblock_height; + int c_superblock_count; + int u_superblock_start; + int v_superblock_start; + unsigned char *superblock_coding; + + int macroblock_count; + int macroblock_width; + int macroblock_height; + + int fragment_count; + int fragment_width[2]; + int fragment_height[2]; + + Vp3Fragment *all_fragments; + int fragment_start[3]; + int data_offset[3]; + + int8_t (*motion_val[2])[2]; + + /* tables */ + uint16_t coded_dc_scale_factor[64]; + uint32_t coded_ac_scale_factor[64]; + uint8_t base_matrix[384][64]; + uint8_t qr_count[2][3]; + uint8_t qr_size [2][3][64]; + uint16_t qr_base[2][3][64]; + + /** + * This is a list of all tokens in bitstream order. Reordering takes place + * by pulling from each level during IDCT. As a consequence, IDCT must be + * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32 + * otherwise. The 32 different tokens with up to 12 bits of extradata are + * collapsed into 3 types, packed as follows: + * (from the low to high bits) + * + * 2 bits: type (0,1,2) + * 0: EOB run, 14 bits for run length (12 needed) + * 1: zero run, 7 bits for run length + * 7 bits for the next coefficient (3 needed) + * 2: coefficient, 14 bits (11 needed) + * + * Coefficients are signed, so are packed in the highest bits for automatic + * sign extension. + */ + int16_t *dct_tokens[3][64]; + int16_t *dct_tokens_base; +#define TOKEN_EOB(eob_run) ((eob_run) << 2) +#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1) +#define TOKEN_COEFF(coeff) (((coeff) << 2) + 2) + + /** + * number of blocks that contain DCT coefficients at the given level or higher + */ + int num_coded_frags[3][64]; + int total_num_coded_frags; + + /* this is a list of indexes into the all_fragments array indicating + * which of the fragments are coded */ + int *coded_fragment_list[3]; + + VLC dc_vlc[16]; + VLC ac_vlc_1[16]; + VLC ac_vlc_2[16]; + VLC ac_vlc_3[16]; + VLC ac_vlc_4[16]; + + VLC superblock_run_length_vlc; + VLC fragment_run_length_vlc; + VLC mode_code_vlc; + VLC motion_vector_vlc; + + /* these arrays need to be on 16-byte boundaries since SSE2 operations + * index into them */ + DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane] + + /* This table contains superblock_count * 16 entries. Each set of 16 + * numbers corresponds to the fragment indexes 0..15 of the superblock. + * An entry will be -1 to indicate that no entry corresponds to that + * index. */ + int *superblock_fragments; + + /* This is an array that indicates how a particular macroblock + * is coded. */ + unsigned char *macroblock_coding; + + uint8_t *edge_emu_buffer; + + /* Huffman decode */ + int hti; + unsigned int hbits; + int entries; + int huff_code_size; + uint32_t huffman_table[80][32][2]; + + uint8_t filter_limit_values[64]; + DECLARE_ALIGNED(8, int, bounding_values_array)[256+2]; +} Vp3DecodeContext; + +/************************************************************************ + * VP3 specific functions + ************************************************************************/ + +static void vp3_decode_flush(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + + if (s->golden_frame.f) + ff_thread_release_buffer(avctx, &s->golden_frame); + if (s->last_frame.f) + ff_thread_release_buffer(avctx, &s->last_frame); + if (s->current_frame.f) + ff_thread_release_buffer(avctx, &s->current_frame); +} + +static av_cold int vp3_decode_end(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + int i; + + av_freep(&s->superblock_coding); + av_freep(&s->all_fragments); + av_freep(&s->coded_fragment_list[0]); + av_freep(&s->dct_tokens_base); + av_freep(&s->superblock_fragments); + av_freep(&s->macroblock_coding); + av_freep(&s->motion_val[0]); + av_freep(&s->motion_val[1]); + av_freep(&s->edge_emu_buffer); + + s->theora_tables = 0; + + /* release all frames */ + vp3_decode_flush(avctx); + av_frame_free(&s->current_frame.f); + av_frame_free(&s->last_frame.f); + av_frame_free(&s->golden_frame.f); + + if (avctx->internal->is_copy) + return 0; + + for (i = 0; i < 16; i++) { + ff_free_vlc(&s->dc_vlc[i]); + ff_free_vlc(&s->ac_vlc_1[i]); + ff_free_vlc(&s->ac_vlc_2[i]); + ff_free_vlc(&s->ac_vlc_3[i]); + ff_free_vlc(&s->ac_vlc_4[i]); + } + + ff_free_vlc(&s->superblock_run_length_vlc); + ff_free_vlc(&s->fragment_run_length_vlc); + ff_free_vlc(&s->mode_code_vlc); + ff_free_vlc(&s->motion_vector_vlc); + + + return 0; +} + +/** + * This function sets up all of the various blocks mappings: + * superblocks <-> fragments, macroblocks <-> fragments, + * superblocks <-> macroblocks + * + * @return 0 is successful; returns 1 if *anything* went wrong. + */ +static int init_block_mapping(Vp3DecodeContext *s) +{ + int sb_x, sb_y, plane; + int x, y, i, j = 0; + + for (plane = 0; plane < 3; plane++) { + int sb_width = plane ? s->c_superblock_width : s->y_superblock_width; + int sb_height = plane ? s->c_superblock_height : s->y_superblock_height; + int frag_width = s->fragment_width[!!plane]; + int frag_height = s->fragment_height[!!plane]; + + for (sb_y = 0; sb_y < sb_height; sb_y++) + for (sb_x = 0; sb_x < sb_width; sb_x++) + for (i = 0; i < 16; i++) { + x = 4*sb_x + hilbert_offset[i][0]; + y = 4*sb_y + hilbert_offset[i][1]; + + if (x < frag_width && y < frag_height) + s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x; + else + s->superblock_fragments[j++] = -1; + } + } + + return 0; /* successful path out */ +} + +/* + * This function sets up the dequantization tables used for a particular + * frame. + */ +static void init_dequantizer(Vp3DecodeContext *s, int qpi) +{ + int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]]; + int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]]; + int i, plane, inter, qri, bmi, bmj, qistart; + + for(inter=0; inter<2; inter++){ + for(plane=0; plane<3; plane++){ + int sum=0; + for(qri=0; qri<s->qr_count[inter][plane]; qri++){ + sum+= s->qr_size[inter][plane][qri]; + if(s->qps[qpi] <= sum) + break; + } + qistart= sum - s->qr_size[inter][plane][qri]; + bmi= s->qr_base[inter][plane][qri ]; + bmj= s->qr_base[inter][plane][qri+1]; + for(i=0; i<64; i++){ + int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i] + - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i] + + s->qr_size[inter][plane][qri]) + / (2*s->qr_size[inter][plane][qri]); + + int qmin= 8<<(inter + !i); + int qscale= i ? ac_scale_factor : dc_scale_factor; + + s->qmat[qpi][inter][plane][s->idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096); + } + // all DC coefficients use the same quant so as not to interfere with DC prediction + s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0]; + } + } +} + +/* + * This function initializes the loop filter boundary limits if the frame's + * quality index is different from the previous frame's. + * + * The filter_limit_values may not be larger than 127. + */ +static void init_loop_filter(Vp3DecodeContext *s) +{ + int *bounding_values= s->bounding_values_array+127; + int filter_limit; + int x; + int value; + + filter_limit = s->filter_limit_values[s->qps[0]]; + av_assert0(filter_limit < 128U); + + /* set up the bounding values */ + memset(s->bounding_values_array, 0, 256 * sizeof(int)); + for (x = 0; x < filter_limit; x++) { + bounding_values[-x] = -x; + bounding_values[x] = x; + } + for (x = value = filter_limit; x < 128 && value; x++, value--) { + bounding_values[ x] = value; + bounding_values[-x] = -value; + } + if (value) + bounding_values[128] = value; + bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202; +} + +/* + * This function unpacks all of the superblock/macroblock/fragment coding + * information from the bitstream. + */ +static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) +{ + int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start }; + int bit = 0; + int current_superblock = 0; + int current_run = 0; + int num_partial_superblocks = 0; + + int i, j; + int current_fragment; + int plane; + + if (s->keyframe) { + memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); + + } else { + + /* unpack the list of partially-coded superblocks */ + bit = get_bits1(gb) ^ 1; + current_run = 0; + + while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) { + if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) + bit = get_bits1(gb); + else + bit ^= 1; + + current_run = get_vlc2(gb, + s->superblock_run_length_vlc.table, 6, 2) + 1; + if (current_run == 34) + current_run += get_bits(gb, 12); + + if (current_superblock + current_run > s->superblock_count) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n"); + return -1; + } + + memset(s->superblock_coding + current_superblock, bit, current_run); + + current_superblock += current_run; + if (bit) + num_partial_superblocks += current_run; + } + + /* unpack the list of fully coded superblocks if any of the blocks were + * not marked as partially coded in the previous step */ + if (num_partial_superblocks < s->superblock_count) { + int superblocks_decoded = 0; + + current_superblock = 0; + bit = get_bits1(gb) ^ 1; + current_run = 0; + + while (superblocks_decoded < s->superblock_count - num_partial_superblocks + && get_bits_left(gb) > 0) { + + if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) + bit = get_bits1(gb); + else + bit ^= 1; + + current_run = get_vlc2(gb, + s->superblock_run_length_vlc.table, 6, 2) + 1; + if (current_run == 34) + current_run += get_bits(gb, 12); + + for (j = 0; j < current_run; current_superblock++) { + if (current_superblock >= s->superblock_count) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n"); + return -1; + } + + /* skip any superblocks already marked as partially coded */ + if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { + s->superblock_coding[current_superblock] = 2*bit; + j++; + } + } + superblocks_decoded += current_run; + } + } + + /* if there were partial blocks, initialize bitstream for + * unpacking fragment codings */ + if (num_partial_superblocks) { + + current_run = 0; + bit = get_bits1(gb); + /* toggle the bit because as soon as the first run length is + * fetched the bit will be toggled again */ + bit ^= 1; + } + } + + /* figure out which fragments are coded; iterate through each + * superblock (all planes) */ + s->total_num_coded_frags = 0; + memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); + + for (plane = 0; plane < 3; plane++) { + int sb_start = superblock_starts[plane]; + int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count); + int num_coded_frags = 0; + + for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) { + + /* iterate through all 16 fragments in a superblock */ + for (j = 0; j < 16; j++) { + + /* if the fragment is in bounds, check its coding status */ + current_fragment = s->superblock_fragments[i * 16 + j]; + if (current_fragment != -1) { + int coded = s->superblock_coding[i]; + + if (s->superblock_coding[i] == SB_PARTIALLY_CODED) { + + /* fragment may or may not be coded; this is the case + * that cares about the fragment coding runs */ + if (current_run-- == 0) { + bit ^= 1; + current_run = get_vlc2(gb, + s->fragment_run_length_vlc.table, 5, 2); + } + coded = bit; + } + + if (coded) { + /* default mode; actual mode will be decoded in + * the next phase */ + s->all_fragments[current_fragment].coding_method = + MODE_INTER_NO_MV; + s->coded_fragment_list[plane][num_coded_frags++] = + current_fragment; + } else { + /* not coded; copy this fragment from the prior frame */ + s->all_fragments[current_fragment].coding_method = + MODE_COPY; + } + } + } + } + s->total_num_coded_frags += num_coded_frags; + for (i = 0; i < 64; i++) + s->num_coded_frags[plane][i] = num_coded_frags; + if (plane < 2) + s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags; + } + return 0; +} + +/* + * This function unpacks all the coding mode data for individual macroblocks + * from the bitstream. + */ +static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) +{ + int i, j, k, sb_x, sb_y; + int scheme; + int current_macroblock; + int current_fragment; + int coding_mode; + int custom_mode_alphabet[CODING_MODE_COUNT]; + const int *alphabet; + Vp3Fragment *frag; + + if (s->keyframe) { + for (i = 0; i < s->fragment_count; i++) + s->all_fragments[i].coding_method = MODE_INTRA; + + } else { + + /* fetch the mode coding scheme for this frame */ + scheme = get_bits(gb, 3); + + /* is it a custom coding scheme? */ + if (scheme == 0) { + for (i = 0; i < 8; i++) + custom_mode_alphabet[i] = MODE_INTER_NO_MV; + for (i = 0; i < 8; i++) + custom_mode_alphabet[get_bits(gb, 3)] = i; + alphabet = custom_mode_alphabet; + } else + alphabet = ModeAlphabet[scheme-1]; + + /* iterate through all of the macroblocks that contain 1 or more + * coded fragments */ + for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { + for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { + if (get_bits_left(gb) <= 0) + return -1; + + for (j = 0; j < 4; j++) { + int mb_x = 2*sb_x + (j>>1); + int mb_y = 2*sb_y + (((j>>1)+j)&1); + current_macroblock = mb_y * s->macroblock_width + mb_x; + + if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height) + continue; + +#define BLOCK_X (2*mb_x + (k&1)) +#define BLOCK_Y (2*mb_y + (k>>1)) + /* coding modes are only stored if the macroblock has at least one + * luma block coded, otherwise it must be INTER_NO_MV */ + for (k = 0; k < 4; k++) { + current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X; + if (s->all_fragments[current_fragment].coding_method != MODE_COPY) + break; + } + if (k == 4) { + s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV; + continue; + } + + /* mode 7 means get 3 bits for each coding mode */ + if (scheme == 7) + coding_mode = get_bits(gb, 3); + else + coding_mode = alphabet + [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; + + s->macroblock_coding[current_macroblock] = coding_mode; + for (k = 0; k < 4; k++) { + frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X; + if (frag->coding_method != MODE_COPY) + frag->coding_method = coding_mode; + } + +#define SET_CHROMA_MODES \ + if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \ + frag[s->fragment_start[1]].coding_method = coding_mode;\ + if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \ + frag[s->fragment_start[2]].coding_method = coding_mode; + + if (s->chroma_y_shift) { + frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x; + SET_CHROMA_MODES + } else if (s->chroma_x_shift) { + frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x; + for (k = 0; k < 2; k++) { + SET_CHROMA_MODES + frag += s->fragment_width[1]; + } + } else { + for (k = 0; k < 4; k++) { + frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X; + SET_CHROMA_MODES + } + } + } + } + } + } + + return 0; +} + +/* + * This function unpacks all the motion vectors for the individual + * macroblocks from the bitstream. + */ +static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) +{ + int j, k, sb_x, sb_y; + int coding_mode; + int motion_x[4]; + int motion_y[4]; + int last_motion_x = 0; + int last_motion_y = 0; + int prior_last_motion_x = 0; + int prior_last_motion_y = 0; + int current_macroblock; + int current_fragment; + int frag; + + if (s->keyframe) + return 0; + + /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */ + coding_mode = get_bits1(gb); + + /* iterate through all of the macroblocks that contain 1 or more + * coded fragments */ + for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { + for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { + if (get_bits_left(gb) <= 0) + return -1; + + for (j = 0; j < 4; j++) { + int mb_x = 2*sb_x + (j>>1); + int mb_y = 2*sb_y + (((j>>1)+j)&1); + current_macroblock = mb_y * s->macroblock_width + mb_x; + + if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height || + (s->macroblock_coding[current_macroblock] == MODE_COPY)) + continue; + + switch (s->macroblock_coding[current_macroblock]) { + + case MODE_INTER_PLUS_MV: + case MODE_GOLDEN_MV: + /* all 6 fragments use the same motion vector */ + if (coding_mode == 0) { + motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; + motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; + } else { + motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; + motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; + } + + /* vector maintenance, only on MODE_INTER_PLUS_MV */ + if (s->macroblock_coding[current_macroblock] == + MODE_INTER_PLUS_MV) { + prior_last_motion_x = last_motion_x; + prior_last_motion_y = last_motion_y; + last_motion_x = motion_x[0]; + last_motion_y = motion_y[0]; + } + break; + + case MODE_INTER_FOURMV: + /* vector maintenance */ + prior_last_motion_x = last_motion_x; + prior_last_motion_y = last_motion_y; + + /* fetch 4 vectors from the bitstream, one for each + * Y fragment, then average for the C fragment vectors */ + for (k = 0; k < 4; k++) { + current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X; + if (s->all_fragments[current_fragment].coding_method != MODE_COPY) { + if (coding_mode == 0) { + motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; + motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; + } else { + motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; + motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; + } + last_motion_x = motion_x[k]; + last_motion_y = motion_y[k]; + } else { + motion_x[k] = 0; + motion_y[k] = 0; + } + } + break; + + case MODE_INTER_LAST_MV: + /* all 6 fragments use the last motion vector */ + motion_x[0] = last_motion_x; + motion_y[0] = last_motion_y; + + /* no vector maintenance (last vector remains the + * last vector) */ + break; + + case MODE_INTER_PRIOR_LAST: + /* all 6 fragments use the motion vector prior to the + * last motion vector */ + motion_x[0] = prior_last_motion_x; + motion_y[0] = prior_last_motion_y; + + /* vector maintenance */ + prior_last_motion_x = last_motion_x; + prior_last_motion_y = last_motion_y; + last_motion_x = motion_x[0]; + last_motion_y = motion_y[0]; + break; + + default: + /* covers intra, inter without MV, golden without MV */ + motion_x[0] = 0; + motion_y[0] = 0; + + /* no vector maintenance */ + break; + } + + /* assign the motion vectors to the correct fragments */ + for (k = 0; k < 4; k++) { + current_fragment = + BLOCK_Y*s->fragment_width[0] + BLOCK_X; + if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { + s->motion_val[0][current_fragment][0] = motion_x[k]; + s->motion_val[0][current_fragment][1] = motion_y[k]; + } else { + s->motion_val[0][current_fragment][0] = motion_x[0]; + s->motion_val[0][current_fragment][1] = motion_y[0]; + } + } + + if (s->chroma_y_shift) { + if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { + motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2); + motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2); + } + motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1); + motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1); + frag = mb_y*s->fragment_width[1] + mb_x; + s->motion_val[1][frag][0] = motion_x[0]; + s->motion_val[1][frag][1] = motion_y[0]; + } else if (s->chroma_x_shift) { + if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { + motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1); + motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1); + motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1); + motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1); + } else { + motion_x[1] = motion_x[0]; + motion_y[1] = motion_y[0]; + } + motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1); + motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1); + + frag = 2*mb_y*s->fragment_width[1] + mb_x; + for (k = 0; k < 2; k++) { + s->motion_val[1][frag][0] = motion_x[k]; + s->motion_val[1][frag][1] = motion_y[k]; + frag += s->fragment_width[1]; + } + } else { + for (k = 0; k < 4; k++) { + frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X; + if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { + s->motion_val[1][frag][0] = motion_x[k]; + s->motion_val[1][frag][1] = motion_y[k]; + } else { + s->motion_val[1][frag][0] = motion_x[0]; + s->motion_val[1][frag][1] = motion_y[0]; + } + } + } + } + } + } + + return 0; +} + +static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb) +{ + int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi; + int num_blocks = s->total_num_coded_frags; + + for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) { + i = blocks_decoded = num_blocks_at_qpi = 0; + + bit = get_bits1(gb) ^ 1; + run_length = 0; + + do { + if (run_length == MAXIMUM_LONG_BIT_RUN) + bit = get_bits1(gb); + else + bit ^= 1; + + run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1; + if (run_length == 34) + run_length += get_bits(gb, 12); + blocks_decoded += run_length; + + if (!bit) + num_blocks_at_qpi += run_length; + + for (j = 0; j < run_length; i++) { + if (i >= s->total_num_coded_frags) + return -1; + + if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) { + s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit; + j++; + } + } + } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0); + + num_blocks -= num_blocks_at_qpi; + } + + return 0; +} + +/* + * This function is called by unpack_dct_coeffs() to extract the VLCs from + * the bitstream. The VLCs encode tokens which are used to unpack DCT + * data. This function unpacks all the VLCs for either the Y plane or both + * C planes, and is called for DC coefficients or different AC coefficient + * levels (since different coefficient types require different VLC tables. + * + * This function returns a residual eob run. E.g, if a particular token gave + * instructions to EOB the next 5 fragments and there were only 2 fragments + * left in the current fragment range, 3 would be returned so that it could + * be passed into the next call to this same function. + */ +static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, + VLC *table, int coeff_index, + int plane, + int eob_run) +{ + int i, j = 0; + int token; + int zero_run = 0; + int16_t coeff = 0; + int bits_to_get; + int blocks_ended; + int coeff_i = 0; + int num_coeffs = s->num_coded_frags[plane][coeff_index]; + int16_t *dct_tokens = s->dct_tokens[plane][coeff_index]; + + /* local references to structure members to avoid repeated deferences */ + int *coded_fragment_list = s->coded_fragment_list[plane]; + Vp3Fragment *all_fragments = s->all_fragments; + VLC_TYPE (*vlc_table)[2] = table->table; + + if (num_coeffs < 0) + av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index); + + if (eob_run > num_coeffs) { + coeff_i = blocks_ended = num_coeffs; + eob_run -= num_coeffs; + } else { + coeff_i = blocks_ended = eob_run; + eob_run = 0; + } + + // insert fake EOB token to cover the split between planes or zzi + if (blocks_ended) + dct_tokens[j++] = blocks_ended << 2; + + while (coeff_i < num_coeffs && get_bits_left(gb) > 0) { + /* decode a VLC into a token */ + token = get_vlc2(gb, vlc_table, 11, 3); + /* use the token to get a zero run, a coefficient, and an eob run */ + if ((unsigned) token <= 6U) { + eob_run = eob_run_base[token]; + if (eob_run_get_bits[token]) + eob_run += get_bits(gb, eob_run_get_bits[token]); + + // record only the number of blocks ended in this plane, + // any spill will be recorded in the next plane. + if (eob_run > num_coeffs - coeff_i) { + dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i); + blocks_ended += num_coeffs - coeff_i; + eob_run -= num_coeffs - coeff_i; + coeff_i = num_coeffs; + } else { + dct_tokens[j++] = TOKEN_EOB(eob_run); + blocks_ended += eob_run; + coeff_i += eob_run; + eob_run = 0; + } + } else if (token >= 0) { + bits_to_get = coeff_get_bits[token]; + if (bits_to_get) + bits_to_get = get_bits(gb, bits_to_get); + coeff = coeff_tables[token][bits_to_get]; + + zero_run = zero_run_base[token]; + if (zero_run_get_bits[token]) + zero_run += get_bits(gb, zero_run_get_bits[token]); + + if (zero_run) { + dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run); + } else { + // Save DC into the fragment structure. DC prediction is + // done in raster order, so the actual DC can't be in with + // other tokens. We still need the token in dct_tokens[] + // however, or else the structure collapses on itself. + if (!coeff_index) + all_fragments[coded_fragment_list[coeff_i]].dc = coeff; + + dct_tokens[j++] = TOKEN_COEFF(coeff); + } + + if (coeff_index + zero_run > 64) { + av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with" + " %d coeffs left\n", zero_run, 64-coeff_index); + zero_run = 64 - coeff_index; + } + + // zero runs code multiple coefficients, + // so don't try to decode coeffs for those higher levels + for (i = coeff_index+1; i <= coeff_index+zero_run; i++) + s->num_coded_frags[plane][i]--; + coeff_i++; + } else { + av_log(s->avctx, AV_LOG_ERROR, + "Invalid token %d\n", token); + return -1; + } + } + + if (blocks_ended > s->num_coded_frags[plane][coeff_index]) + av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n"); + + // decrement the number of blocks that have higher coeffecients for each + // EOB run at this level + if (blocks_ended) + for (i = coeff_index+1; i < 64; i++) + s->num_coded_frags[plane][i] -= blocks_ended; + + // setup the next buffer + if (plane < 2) + s->dct_tokens[plane+1][coeff_index] = dct_tokens + j; + else if (coeff_index < 63) + s->dct_tokens[0][coeff_index+1] = dct_tokens + j; + + return eob_run; +} + +static void reverse_dc_prediction(Vp3DecodeContext *s, + int first_fragment, + int fragment_width, + int fragment_height); +/* + * This function unpacks all of the DCT coefficient data from the + * bitstream. + */ +static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) +{ + int i; + int dc_y_table; + int dc_c_table; + int ac_y_table; + int ac_c_table; + int residual_eob_run = 0; + VLC *y_tables[64]; + VLC *c_tables[64]; + + s->dct_tokens[0][0] = s->dct_tokens_base; + + /* fetch the DC table indexes */ + dc_y_table = get_bits(gb, 4); + dc_c_table = get_bits(gb, 4); + + /* unpack the Y plane DC coefficients */ + residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, + 0, residual_eob_run); + if (residual_eob_run < 0) + return residual_eob_run; + + /* reverse prediction of the Y-plane DC coefficients */ + reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]); + + /* unpack the C plane DC coefficients */ + residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, + 1, residual_eob_run); + if (residual_eob_run < 0) + return residual_eob_run; + residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, + 2, residual_eob_run); + if (residual_eob_run < 0) + return residual_eob_run; + + /* reverse prediction of the C-plane DC coefficients */ + if (!(s->avctx->flags & CODEC_FLAG_GRAY)) + { + reverse_dc_prediction(s, s->fragment_start[1], + s->fragment_width[1], s->fragment_height[1]); + reverse_dc_prediction(s, s->fragment_start[2], + s->fragment_width[1], s->fragment_height[1]); + } + + /* fetch the AC table indexes */ + ac_y_table = get_bits(gb, 4); + ac_c_table = get_bits(gb, 4); + + /* build tables of AC VLC tables */ + for (i = 1; i <= 5; i++) { + y_tables[i] = &s->ac_vlc_1[ac_y_table]; + c_tables[i] = &s->ac_vlc_1[ac_c_table]; + } + for (i = 6; i <= 14; i++) { + y_tables[i] = &s->ac_vlc_2[ac_y_table]; + c_tables[i] = &s->ac_vlc_2[ac_c_table]; + } + for (i = 15; i <= 27; i++) { + y_tables[i] = &s->ac_vlc_3[ac_y_table]; + c_tables[i] = &s->ac_vlc_3[ac_c_table]; + } + for (i = 28; i <= 63; i++) { + y_tables[i] = &s->ac_vlc_4[ac_y_table]; + c_tables[i] = &s->ac_vlc_4[ac_c_table]; + } + + /* decode all AC coefficents */ + for (i = 1; i <= 63; i++) { + residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i, + 0, residual_eob_run); + if (residual_eob_run < 0) + return residual_eob_run; + + residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, + 1, residual_eob_run); + if (residual_eob_run < 0) + return residual_eob_run; + residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, + 2, residual_eob_run); + if (residual_eob_run < 0) + return residual_eob_run; + } + + return 0; +} + +/* + * This function reverses the DC prediction for each coded fragment in + * the frame. Much of this function is adapted directly from the original + * VP3 source code. + */ +#define COMPATIBLE_FRAME(x) \ + (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) +#define DC_COEFF(u) s->all_fragments[u].dc + +static void reverse_dc_prediction(Vp3DecodeContext *s, + int first_fragment, + int fragment_width, + int fragment_height) +{ + +#define PUL 8 +#define PU 4 +#define PUR 2 +#define PL 1 + + int x, y; + int i = first_fragment; + + int predicted_dc; + + /* DC values for the left, up-left, up, and up-right fragments */ + int vl, vul, vu, vur; + + /* indexes for the left, up-left, up, and up-right fragments */ + int l, ul, u, ur; + + /* + * The 6 fields mean: + * 0: up-left multiplier + * 1: up multiplier + * 2: up-right multiplier + * 3: left multiplier + */ + static const int predictor_transform[16][4] = { + { 0, 0, 0, 0}, + { 0, 0, 0,128}, // PL + { 0, 0,128, 0}, // PUR + { 0, 0, 53, 75}, // PUR|PL + { 0,128, 0, 0}, // PU + { 0, 64, 0, 64}, // PU|PL + { 0,128, 0, 0}, // PU|PUR + { 0, 0, 53, 75}, // PU|PUR|PL + {128, 0, 0, 0}, // PUL + { 0, 0, 0,128}, // PUL|PL + { 64, 0, 64, 0}, // PUL|PUR + { 0, 0, 53, 75}, // PUL|PUR|PL + { 0,128, 0, 0}, // PUL|PU + {-104,116, 0,116}, // PUL|PU|PL + { 24, 80, 24, 0}, // PUL|PU|PUR + {-104,116, 0,116} // PUL|PU|PUR|PL + }; + + /* This table shows which types of blocks can use other blocks for + * prediction. For example, INTRA is the only mode in this table to + * have a frame number of 0. That means INTRA blocks can only predict + * from other INTRA blocks. There are 2 golden frame coding types; + * blocks encoding in these modes can only predict from other blocks + * that were encoded with these 1 of these 2 modes. */ + static const unsigned char compatible_frame[9] = { + 1, /* MODE_INTER_NO_MV */ + 0, /* MODE_INTRA */ + 1, /* MODE_INTER_PLUS_MV */ + 1, /* MODE_INTER_LAST_MV */ + 1, /* MODE_INTER_PRIOR_MV */ + 2, /* MODE_USING_GOLDEN */ + 2, /* MODE_GOLDEN_MV */ + 1, /* MODE_INTER_FOUR_MV */ + 3 /* MODE_COPY */ + }; + int current_frame_type; + + /* there is a last DC predictor for each of the 3 frame types */ + short last_dc[3]; + + int transform = 0; + + vul = vu = vur = vl = 0; + last_dc[0] = last_dc[1] = last_dc[2] = 0; + + /* for each fragment row... */ + for (y = 0; y < fragment_height; y++) { + + /* for each fragment in a row... */ + for (x = 0; x < fragment_width; x++, i++) { + + /* reverse prediction if this block was coded */ + if (s->all_fragments[i].coding_method != MODE_COPY) { + + current_frame_type = + compatible_frame[s->all_fragments[i].coding_method]; + + transform= 0; + if(x){ + l= i-1; + vl = DC_COEFF(l); + if(COMPATIBLE_FRAME(l)) + transform |= PL; + } + if(y){ + u= i-fragment_width; + vu = DC_COEFF(u); + if(COMPATIBLE_FRAME(u)) + transform |= PU; + if(x){ + ul= i-fragment_width-1; + vul = DC_COEFF(ul); + if(COMPATIBLE_FRAME(ul)) + transform |= PUL; + } + if(x + 1 < fragment_width){ + ur= i-fragment_width+1; + vur = DC_COEFF(ur); + if(COMPATIBLE_FRAME(ur)) + transform |= PUR; + } + } + + if (transform == 0) { + + /* if there were no fragments to predict from, use last + * DC saved */ + predicted_dc = last_dc[current_frame_type]; + } else { + + /* apply the appropriate predictor transform */ + predicted_dc = + (predictor_transform[transform][0] * vul) + + (predictor_transform[transform][1] * vu) + + (predictor_transform[transform][2] * vur) + + (predictor_transform[transform][3] * vl); + + predicted_dc /= 128; + + /* check for outranging on the [ul u l] and + * [ul u ur l] predictors */ + if ((transform == 15) || (transform == 13)) { + if (FFABS(predicted_dc - vu) > 128) + predicted_dc = vu; + else if (FFABS(predicted_dc - vl) > 128) + predicted_dc = vl; + else if (FFABS(predicted_dc - vul) > 128) + predicted_dc = vul; + } + } + + /* at long last, apply the predictor */ + DC_COEFF(i) += predicted_dc; + /* save the DC */ + last_dc[current_frame_type] = DC_COEFF(i); + } + } + } +} + +static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend) +{ + int x, y; + int *bounding_values= s->bounding_values_array+127; + + int width = s->fragment_width[!!plane]; + int height = s->fragment_height[!!plane]; + int fragment = s->fragment_start [plane] + ystart * width; + int stride = s->current_frame.f->linesize[plane]; + uint8_t *plane_data = s->current_frame.f->data [plane]; + if (!s->flipped_image) stride = -stride; + plane_data += s->data_offset[plane] + 8*ystart*stride; + + for (y = ystart; y < yend; y++) { + + for (x = 0; x < width; x++) { + /* This code basically just deblocks on the edges of coded blocks. + * However, it has to be much more complicated because of the + * braindamaged deblock ordering used in VP3/Theora. Order matters + * because some pixels get filtered twice. */ + if( s->all_fragments[fragment].coding_method != MODE_COPY ) + { + /* do not perform left edge filter for left columns frags */ + if (x > 0) { + s->vp3dsp.h_loop_filter( + plane_data + 8*x, + stride, bounding_values); + } + + /* do not perform top edge filter for top row fragments */ + if (y > 0) { + s->vp3dsp.v_loop_filter( + plane_data + 8*x, + stride, bounding_values); + } + + /* do not perform right edge filter for right column + * fragments or if right fragment neighbor is also coded + * in this frame (it will be filtered in next iteration) */ + if ((x < width - 1) && + (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) { + s->vp3dsp.h_loop_filter( + plane_data + 8*x + 8, + stride, bounding_values); + } + + /* do not perform bottom edge filter for bottom row + * fragments or if bottom fragment neighbor is also coded + * in this frame (it will be filtered in the next row) */ + if ((y < height - 1) && + (s->all_fragments[fragment + width].coding_method == MODE_COPY)) { + s->vp3dsp.v_loop_filter( + plane_data + 8*x + 8*stride, + stride, bounding_values); + } + } + + fragment++; + } + plane_data += 8*stride; + } +} + +/** + * Pull DCT tokens from the 64 levels to decode and dequant the coefficients + * for the next block in coding order + */ +static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, + int plane, int inter, int16_t block[64]) +{ + int16_t *dequantizer = s->qmat[frag->qpi][inter][plane]; + uint8_t *perm = s->idct_scantable; + int i = 0; + + do { + int token = *s->dct_tokens[plane][i]; + switch (token & 3) { + case 0: // EOB + if (--token < 4) // 0-3 are token types, so the EOB run must now be 0 + s->dct_tokens[plane][i]++; + else + *s->dct_tokens[plane][i] = token & ~3; + goto end; + case 1: // zero run + s->dct_tokens[plane][i]++; + i += (token >> 2) & 0x7f; + if (i > 63) { + av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n"); + return i; + } + block[perm[i]] = (token >> 9) * dequantizer[perm[i]]; + i++; + break; + case 2: // coeff + block[perm[i]] = (token >> 2) * dequantizer[perm[i]]; + s->dct_tokens[plane][i++]++; + break; + default: // shouldn't happen + return i; + } + } while (i < 64); + // return value is expected to be a valid level + i--; +end: + // the actual DC+prediction is in the fragment structure + block[0] = frag->dc * s->qmat[0][inter][plane][0]; + return i; +} + +/** + * called when all pixels up to row y are complete + */ +static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y) +{ + int h, cy, i; + int offset[AV_NUM_DATA_POINTERS]; + + if (HAVE_THREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) { + int y_flipped = s->flipped_image ? s->avctx->height-y : y; + + // At the end of the frame, report INT_MAX instead of the height of the frame. + // This makes the other threads' ff_thread_await_progress() calls cheaper, because + // they don't have to clip their values. + ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0); + } + + if(s->avctx->draw_horiz_band==NULL) + return; + + h= y - s->last_slice_end; + s->last_slice_end= y; + y -= h; + + if (!s->flipped_image) { + y = s->avctx->height - y - h; + } + + cy = y >> s->chroma_y_shift; + offset[0] = s->current_frame.f->linesize[0]*y; + offset[1] = s->current_frame.f->linesize[1]*cy; + offset[2] = s->current_frame.f->linesize[2]*cy; + for (i = 3; i < AV_NUM_DATA_POINTERS; i++) + offset[i] = 0; + + emms_c(); + s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h); +} + +/** + * Wait for the reference frame of the current fragment. + * The progress value is in luma pixel rows. + */ +static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y) +{ + ThreadFrame *ref_frame; + int ref_row; + int border = motion_y&1; + + if (fragment->coding_method == MODE_USING_GOLDEN || + fragment->coding_method == MODE_GOLDEN_MV) + ref_frame = &s->golden_frame; + else + ref_frame = &s->last_frame; + + ref_row = y + (motion_y>>1); + ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border); + + ff_thread_await_progress(ref_frame, ref_row, 0); +} + +/* + * Perform the final rendering for a particular slice of data. + * The slice number ranges from 0..(c_superblock_height - 1). + */ +static void render_slice(Vp3DecodeContext *s, int slice) +{ + int x, y, i, j, fragment; + int16_t *block = s->block; + int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; + int motion_halfpel_index; + uint8_t *motion_source; + int plane, first_pixel; + + if (slice >= s->c_superblock_height) + return; + + for (plane = 0; plane < 3; plane++) { + uint8_t *output_plane = s->current_frame.f->data [plane] + s->data_offset[plane]; + uint8_t * last_plane = s-> last_frame.f->data [plane] + s->data_offset[plane]; + uint8_t *golden_plane = s-> golden_frame.f->data [plane] + s->data_offset[plane]; + int stride = s->current_frame.f->linesize[plane]; + int plane_width = s->width >> (plane && s->chroma_x_shift); + int plane_height = s->height >> (plane && s->chroma_y_shift); + int8_t (*motion_val)[2] = s->motion_val[!!plane]; + + int sb_x, sb_y = slice << (!plane && s->chroma_y_shift); + int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift); + int slice_width = plane ? s->c_superblock_width : s->y_superblock_width; + + int fragment_width = s->fragment_width[!!plane]; + int fragment_height = s->fragment_height[!!plane]; + int fragment_start = s->fragment_start[plane]; + int do_await = !plane && HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME); + + if (!s->flipped_image) stride = -stride; + if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY)) + continue; + + /* for each superblock row in the slice (both of them)... */ + for (; sb_y < slice_height; sb_y++) { + + /* for each superblock in a row... */ + for (sb_x = 0; sb_x < slice_width; sb_x++) { + + /* for each block in a superblock... */ + for (j = 0; j < 16; j++) { + x = 4*sb_x + hilbert_offset[j][0]; + y = 4*sb_y + hilbert_offset[j][1]; + fragment = y*fragment_width + x; + + i = fragment_start + fragment; + + // bounds check + if (x >= fragment_width || y >= fragment_height) + continue; + + first_pixel = 8*y*stride + 8*x; + + if (do_await && s->all_fragments[i].coding_method != MODE_INTRA) + await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift); + + /* transform if this block was coded */ + if (s->all_fragments[i].coding_method != MODE_COPY) { + if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) || + (s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) + motion_source= golden_plane; + else + motion_source= last_plane; + + motion_source += first_pixel; + motion_halfpel_index = 0; + + /* sort out the motion vector if this fragment is coded + * using a motion vector method */ + if ((s->all_fragments[i].coding_method > MODE_INTRA) && + (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { + int src_x, src_y; + motion_x = motion_val[fragment][0]; + motion_y = motion_val[fragment][1]; + + src_x= (motion_x>>1) + 8*x; + src_y= (motion_y>>1) + 8*y; + + motion_halfpel_index = motion_x & 0x01; + motion_source += (motion_x >> 1); + + motion_halfpel_index |= (motion_y & 0x01) << 1; + motion_source += ((motion_y >> 1) * stride); + + if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){ + uint8_t *temp= s->edge_emu_buffer; + if(stride<0) temp -= 8*stride; + + s->vdsp.emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height); + motion_source= temp; + } + } + + + /* first, take care of copying a block from either the + * previous or the golden frame */ + if (s->all_fragments[i].coding_method != MODE_INTRA) { + /* Note, it is possible to implement all MC cases with + put_no_rnd_pixels_l2 which would look more like the + VP3 source but this would be slower as + put_no_rnd_pixels_tab is better optimzed */ + if(motion_halfpel_index != 3){ + s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index]( + output_plane + first_pixel, + motion_source, stride, 8); + }else{ + int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1 + s->vp3dsp.put_no_rnd_pixels_l2( + output_plane + first_pixel, + motion_source - d, + motion_source + stride + 1 + d, + stride, 8); + } + } + + /* invert DCT and place (or add) in final output */ + + if (s->all_fragments[i].coding_method == MODE_INTRA) { + vp3_dequant(s, s->all_fragments + i, plane, 0, block); + s->vp3dsp.idct_put( + output_plane + first_pixel, + stride, + block); + } else { + if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) { + s->vp3dsp.idct_add( + output_plane + first_pixel, + stride, + block); + } else { + s->vp3dsp.idct_dc_add(output_plane + first_pixel, stride, block); + } + } + } else { + + /* copy directly from the previous frame */ + s->hdsp.put_pixels_tab[1][0]( + output_plane + first_pixel, + last_plane + first_pixel, + stride, 8); + + } + } + } + + // Filter up to the last row in the superblock row + if (!s->skip_loop_filter) + apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1)); + } + } + + /* this looks like a good place for slice dispatch... */ + /* algorithm: + * if (slice == s->macroblock_height - 1) + * dispatch (both last slice & 2nd-to-last slice); + * else if (slice > 0) + * dispatch (slice - 1); + */ + + vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16)); +} + +/// Allocate tables for per-frame data in Vp3DecodeContext +static av_cold int allocate_tables(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + int y_fragment_count, c_fragment_count; + + y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; + c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; + + s->superblock_coding = av_malloc(s->superblock_count); + s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment)); + s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int)); + s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base)); + s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0])); + s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1])); + + /* work out the block mapping tables */ + s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int)); + s->macroblock_coding = av_malloc(s->macroblock_count + 1); + + if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base || + !s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding || + !s->motion_val[0] || !s->motion_val[1]) { + vp3_decode_end(avctx); + return -1; + } + + init_block_mapping(s); + + return 0; +} + +static av_cold int init_frames(Vp3DecodeContext *s) +{ + s->current_frame.f = av_frame_alloc(); + s->last_frame.f = av_frame_alloc(); + s->golden_frame.f = av_frame_alloc(); + + if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) { + av_frame_free(&s->current_frame.f); + av_frame_free(&s->last_frame.f); + av_frame_free(&s->golden_frame.f); + return AVERROR(ENOMEM); + } + + return 0; +} + +static av_cold int vp3_decode_init(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + int i, inter, plane, ret; + int c_width; + int c_height; + int y_fragment_count, c_fragment_count; + + ret = init_frames(s); + if (ret < 0) + return ret; + + avctx->internal->allocate_progress = 1; + + if (avctx->codec_tag == MKTAG('V','P','3','0')) + s->version = 0; + else + s->version = 1; + + s->avctx = avctx; + s->width = FFALIGN(avctx->width, 16); + s->height = FFALIGN(avctx->height, 16); + if (avctx->codec_id != AV_CODEC_ID_THEORA) + avctx->pix_fmt = AV_PIX_FMT_YUV420P; + avctx->chroma_sample_location = AVCHROMA_LOC_CENTER; + ff_hpeldsp_init(&s->hdsp, avctx->flags | CODEC_FLAG_BITEXACT); + ff_videodsp_init(&s->vdsp, 8); + ff_vp3dsp_init(&s->vp3dsp, avctx->flags); + + for (i = 0; i < 64; i++) { +#define T(x) (x >> 3) | ((x & 7) << 3) + s->idct_permutation[i] = T(i); + s->idct_scantable[i] = T(ff_zigzag_direct[i]); +#undef T + } + + /* initialize to an impossible value which will force a recalculation + * in the first frame decode */ + for (i = 0; i < 3; i++) + s->qps[i] = -1; + + avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); + + s->y_superblock_width = (s->width + 31) / 32; + s->y_superblock_height = (s->height + 31) / 32; + s->y_superblock_count = s->y_superblock_width * s->y_superblock_height; + + /* work out the dimensions for the C planes */ + c_width = s->width >> s->chroma_x_shift; + c_height = s->height >> s->chroma_y_shift; + s->c_superblock_width = (c_width + 31) / 32; + s->c_superblock_height = (c_height + 31) / 32; + s->c_superblock_count = s->c_superblock_width * s->c_superblock_height; + + s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2); + s->u_superblock_start = s->y_superblock_count; + s->v_superblock_start = s->u_superblock_start + s->c_superblock_count; + + s->macroblock_width = (s->width + 15) / 16; + s->macroblock_height = (s->height + 15) / 16; + s->macroblock_count = s->macroblock_width * s->macroblock_height; + + s->fragment_width[0] = s->width / FRAGMENT_PIXELS; + s->fragment_height[0] = s->height / FRAGMENT_PIXELS; + s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift; + s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift; + + /* fragment count covers all 8x8 blocks for all 3 planes */ + y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; + c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; + s->fragment_count = y_fragment_count + 2*c_fragment_count; + s->fragment_start[1] = y_fragment_count; + s->fragment_start[2] = y_fragment_count + c_fragment_count; + + if (!s->theora_tables) + { + for (i = 0; i < 64; i++) { + s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i]; + s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i]; + s->base_matrix[0][i] = vp31_intra_y_dequant[i]; + s->base_matrix[1][i] = vp31_intra_c_dequant[i]; + s->base_matrix[2][i] = vp31_inter_dequant[i]; + s->filter_limit_values[i] = vp31_filter_limit_values[i]; + } + + for(inter=0; inter<2; inter++){ + for(plane=0; plane<3; plane++){ + s->qr_count[inter][plane]= 1; + s->qr_size [inter][plane][0]= 63; + s->qr_base [inter][plane][0]= + s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter; + } + } + + /* init VLC tables */ + for (i = 0; i < 16; i++) { + + /* DC histograms */ + init_vlc(&s->dc_vlc[i], 11, 32, + &dc_bias[i][0][1], 4, 2, + &dc_bias[i][0][0], 4, 2, 0); + + /* group 1 AC histograms */ + init_vlc(&s->ac_vlc_1[i], 11, 32, + &ac_bias_0[i][0][1], 4, 2, + &ac_bias_0[i][0][0], 4, 2, 0); + + /* group 2 AC histograms */ + init_vlc(&s->ac_vlc_2[i], 11, 32, + &ac_bias_1[i][0][1], 4, 2, + &ac_bias_1[i][0][0], 4, 2, 0); + + /* group 3 AC histograms */ + init_vlc(&s->ac_vlc_3[i], 11, 32, + &ac_bias_2[i][0][1], 4, 2, + &ac_bias_2[i][0][0], 4, 2, 0); + + /* group 4 AC histograms */ + init_vlc(&s->ac_vlc_4[i], 11, 32, + &ac_bias_3[i][0][1], 4, 2, + &ac_bias_3[i][0][0], 4, 2, 0); + } + } else { + + for (i = 0; i < 16; i++) { + /* DC histograms */ + if (init_vlc(&s->dc_vlc[i], 11, 32, + &s->huffman_table[i][0][1], 8, 4, + &s->huffman_table[i][0][0], 8, 4, 0) < 0) + goto vlc_fail; + + /* group 1 AC histograms */ + if (init_vlc(&s->ac_vlc_1[i], 11, 32, + &s->huffman_table[i+16][0][1], 8, 4, + &s->huffman_table[i+16][0][0], 8, 4, 0) < 0) + goto vlc_fail; + + /* group 2 AC histograms */ + if (init_vlc(&s->ac_vlc_2[i], 11, 32, + &s->huffman_table[i+16*2][0][1], 8, 4, + &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0) + goto vlc_fail; + + /* group 3 AC histograms */ + if (init_vlc(&s->ac_vlc_3[i], 11, 32, + &s->huffman_table[i+16*3][0][1], 8, 4, + &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0) + goto vlc_fail; + + /* group 4 AC histograms */ + if (init_vlc(&s->ac_vlc_4[i], 11, 32, + &s->huffman_table[i+16*4][0][1], 8, 4, + &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0) + goto vlc_fail; + } + } + + init_vlc(&s->superblock_run_length_vlc, 6, 34, + &superblock_run_length_vlc_table[0][1], 4, 2, + &superblock_run_length_vlc_table[0][0], 4, 2, 0); + + init_vlc(&s->fragment_run_length_vlc, 5, 30, + &fragment_run_length_vlc_table[0][1], 4, 2, + &fragment_run_length_vlc_table[0][0], 4, 2, 0); + + init_vlc(&s->mode_code_vlc, 3, 8, + &mode_code_vlc_table[0][1], 2, 1, + &mode_code_vlc_table[0][0], 2, 1, 0); + + init_vlc(&s->motion_vector_vlc, 6, 63, + &motion_vector_vlc_table[0][1], 2, 1, + &motion_vector_vlc_table[0][0], 2, 1, 0); + + return allocate_tables(avctx); + +vlc_fail: + av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n"); + return -1; +} + +/// Release and shuffle frames after decode finishes +static int update_frames(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + int ret = 0; + + + /* shuffle frames (last = current) */ + ff_thread_release_buffer(avctx, &s->last_frame); + ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame); + if (ret < 0) + goto fail; + + if (s->keyframe) { + ff_thread_release_buffer(avctx, &s->golden_frame); + ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame); + } + +fail: + ff_thread_release_buffer(avctx, &s->current_frame); + return ret; +} + +static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src) +{ + ff_thread_release_buffer(s->avctx, dst); + if (src->f->data[0]) + return ff_thread_ref_frame(dst, src); + return 0; +} + +static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src) +{ + int ret; + if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 || + (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 || + (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0) + return ret; + return 0; +} + +static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) +{ + Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data; + int qps_changed = 0, i, err; + +#define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field) + + if (!s1->current_frame.f->data[0] + ||s->width != s1->width + ||s->height!= s1->height) { + if (s != s1) + ref_frames(s, s1); + return -1; + } + + if (s != s1) { + // init tables if the first frame hasn't been decoded + if (!s->current_frame.f->data[0]) { + int y_fragment_count, c_fragment_count; + s->avctx = dst; + err = allocate_tables(dst); + if (err) + return err; + y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; + c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; + memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0])); + memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1])); + } + + // copy previous frame data + if ((err = ref_frames(s, s1)) < 0) + return err; + + s->keyframe = s1->keyframe; + + // copy qscale data if necessary + for (i = 0; i < 3; i++) { + if (s->qps[i] != s1->qps[1]) { + qps_changed = 1; + memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i])); + } + } + + if (s->qps[0] != s1->qps[0]) + memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array)); + + if (qps_changed) + copy_fields(s, s1, qps, superblock_count); +#undef copy_fields + } + + return update_frames(dst); +} + +static int vp3_decode_frame(AVCodecContext *avctx, + void *data, int *got_frame, + AVPacket *avpkt) +{ + const uint8_t *buf = avpkt->data; + int buf_size = avpkt->size; + Vp3DecodeContext *s = avctx->priv_data; + GetBitContext gb; + int i, ret; + + init_get_bits(&gb, buf, buf_size * 8); + +#if CONFIG_THEORA_DECODER + if (s->theora && get_bits1(&gb)) + { + int type = get_bits(&gb, 7); + skip_bits_long(&gb, 6*8); /* "theora" */ + + if (s->avctx->active_thread_type&FF_THREAD_FRAME) { + av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n"); + return AVERROR_PATCHWELCOME; + } + if (type == 0) { + vp3_decode_end(avctx); + ret = theora_decode_header(avctx, &gb); + + if (ret < 0) { + vp3_decode_end(avctx); + } else + ret = vp3_decode_init(avctx); + return ret; + } else if (type == 2) { + ret = theora_decode_tables(avctx, &gb); + if (ret < 0) { + vp3_decode_end(avctx); + } else + ret = vp3_decode_init(avctx); + return ret; + } + + av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n"); + return -1; + } +#endif + + s->keyframe = !get_bits1(&gb); + if (!s->all_fragments) { + av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n"); + return -1; + } + if (!s->theora) + skip_bits(&gb, 1); + for (i = 0; i < 3; i++) + s->last_qps[i] = s->qps[i]; + + s->nqps=0; + do{ + s->qps[s->nqps++]= get_bits(&gb, 6); + } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb)); + for (i = s->nqps; i < 3; i++) + s->qps[i] = -1; + + if (s->avctx->debug & FF_DEBUG_PICT_INFO) + av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n", + s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]); + + s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] || + avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY); + + if (s->qps[0] != s->last_qps[0]) + init_loop_filter(s); + + for (i = 0; i < s->nqps; i++) + // reinit all dequantizers if the first one changed, because + // the DC of the first quantizer must be used for all matrices + if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0]) + init_dequantizer(s, i); + + if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe) + return buf_size; + + s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; + s->current_frame.f->key_frame = s->keyframe; + if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0) + goto error; + + if (!s->edge_emu_buffer) + s->edge_emu_buffer = av_malloc(9*FFABS(s->current_frame.f->linesize[0])); + + if (s->keyframe) { + if (!s->theora) + { + skip_bits(&gb, 4); /* width code */ + skip_bits(&gb, 4); /* height code */ + if (s->version) + { + s->version = get_bits(&gb, 5); + if (avctx->frame_number == 0) + av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version); + } + } + if (s->version || s->theora) + { + if (get_bits1(&gb)) + av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n"); + skip_bits(&gb, 2); /* reserved? */ + } + } else { + if (!s->golden_frame.f->data[0]) { + av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n"); + + s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I; + if (ff_thread_get_buffer(avctx, &s->golden_frame, AV_GET_BUFFER_FLAG_REF) < 0) + goto error; + ff_thread_release_buffer(avctx, &s->last_frame); + if ((ret = ff_thread_ref_frame(&s->last_frame, &s->golden_frame)) < 0) + goto error; + ff_thread_report_progress(&s->last_frame, INT_MAX, 0); + } + } + + memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment)); + ff_thread_finish_setup(avctx); + + if (unpack_superblocks(s, &gb)){ + av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n"); + goto error; + } + if (unpack_modes(s, &gb)){ + av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n"); + goto error; + } + if (unpack_vectors(s, &gb)){ + av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n"); + goto error; + } + if (unpack_block_qpis(s, &gb)){ + av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n"); + goto error; + } + if (unpack_dct_coeffs(s, &gb)){ + av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n"); + goto error; + } + + for (i = 0; i < 3; i++) { + int height = s->height >> (i && s->chroma_y_shift); + if (s->flipped_image) + s->data_offset[i] = 0; + else + s->data_offset[i] = (height-1) * s->current_frame.f->linesize[i]; + } + + s->last_slice_end = 0; + for (i = 0; i < s->c_superblock_height; i++) + render_slice(s, i); + + // filter the last row + for (i = 0; i < 3; i++) { + int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1; + apply_loop_filter(s, i, row, row+1); + } + vp3_draw_horiz_band(s, s->avctx->height); + + if ((ret = av_frame_ref(data, s->current_frame.f)) < 0) + return ret; + *got_frame = 1; + + if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME)) { + ret = update_frames(avctx); + if (ret < 0) + return ret; + } + + return buf_size; + +error: + ff_thread_report_progress(&s->current_frame, INT_MAX, 0); + + if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME)) + av_frame_unref(s->current_frame.f); + + return -1; +} + +static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb) +{ + Vp3DecodeContext *s = avctx->priv_data; + + if (get_bits1(gb)) { + int token; + if (s->entries >= 32) { /* overflow */ + av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); + return -1; + } + token = get_bits(gb, 5); + av_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n", + s->hti, s->hbits, token, s->entries, s->huff_code_size); + s->huffman_table[s->hti][token][0] = s->hbits; + s->huffman_table[s->hti][token][1] = s->huff_code_size; + s->entries++; + } + else { + if (s->huff_code_size >= 32) {/* overflow */ + av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); + return -1; + } + s->huff_code_size++; + s->hbits <<= 1; + if (read_huffman_tree(avctx, gb)) + return -1; + s->hbits |= 1; + if (read_huffman_tree(avctx, gb)) + return -1; + s->hbits >>= 1; + s->huff_code_size--; + } + return 0; +} + +static int vp3_init_thread_copy(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + + s->superblock_coding = NULL; + s->all_fragments = NULL; + s->coded_fragment_list[0] = NULL; + s->dct_tokens_base = NULL; + s->superblock_fragments = NULL; + s->macroblock_coding = NULL; + s->motion_val[0] = NULL; + s->motion_val[1] = NULL; + s->edge_emu_buffer = NULL; + + return init_frames(s); +} + +#if CONFIG_THEORA_DECODER +static const enum AVPixelFormat theora_pix_fmts[4] = { + AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P +}; + +static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb) +{ + Vp3DecodeContext *s = avctx->priv_data; + int visible_width, visible_height, colorspace; + int offset_x = 0, offset_y = 0; + AVRational fps, aspect; + + s->theora = get_bits_long(gb, 24); + av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora); + + /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */ + /* but previous versions have the image flipped relative to vp3 */ + if (s->theora < 0x030200) + { + s->flipped_image = 1; + av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n"); + } + + visible_width = s->width = get_bits(gb, 16) << 4; + visible_height = s->height = get_bits(gb, 16) << 4; + + if(av_image_check_size(s->width, s->height, 0, avctx)){ + av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height); + s->width= s->height= 0; + return -1; + } + + if (s->theora >= 0x030200) { + visible_width = get_bits_long(gb, 24); + visible_height = get_bits_long(gb, 24); + + offset_x = get_bits(gb, 8); /* offset x */ + offset_y = get_bits(gb, 8); /* offset y, from bottom */ + } + + fps.num = get_bits_long(gb, 32); + fps.den = get_bits_long(gb, 32); + if (fps.num && fps.den) { + av_reduce(&avctx->time_base.num, &avctx->time_base.den, + fps.den, fps.num, 1<<30); + } + + aspect.num = get_bits_long(gb, 24); + aspect.den = get_bits_long(gb, 24); + if (aspect.num && aspect.den) { + av_reduce(&avctx->sample_aspect_ratio.num, + &avctx->sample_aspect_ratio.den, + aspect.num, aspect.den, 1<<30); + } + + if (s->theora < 0x030200) + skip_bits(gb, 5); /* keyframe frequency force */ + colorspace = get_bits(gb, 8); + skip_bits(gb, 24); /* bitrate */ + + skip_bits(gb, 6); /* quality hint */ + + if (s->theora >= 0x030200) + { + skip_bits(gb, 5); /* keyframe frequency force */ + avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)]; + if (avctx->pix_fmt == AV_PIX_FMT_NONE) { + av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n"); + return AVERROR_INVALIDDATA; + } + skip_bits(gb, 3); /* reserved */ + } + +// align_get_bits(gb); + + if ( visible_width <= s->width && visible_width > s->width-16 + && visible_height <= s->height && visible_height > s->height-16 + && !offset_x && (offset_y == s->height - visible_height)) + avcodec_set_dimensions(avctx, visible_width, visible_height); + else + avcodec_set_dimensions(avctx, s->width, s->height); + + if (colorspace == 1) { + avctx->color_primaries = AVCOL_PRI_BT470M; + } else if (colorspace == 2) { + avctx->color_primaries = AVCOL_PRI_BT470BG; + } + if (colorspace == 1 || colorspace == 2) { + avctx->colorspace = AVCOL_SPC_BT470BG; + avctx->color_trc = AVCOL_TRC_BT709; + } + + return 0; +} + +static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb) +{ + Vp3DecodeContext *s = avctx->priv_data; + int i, n, matrices, inter, plane; + + if (s->theora >= 0x030200) { + n = get_bits(gb, 3); + /* loop filter limit values table */ + if (n) + for (i = 0; i < 64; i++) + s->filter_limit_values[i] = get_bits(gb, n); + } + + if (s->theora >= 0x030200) + n = get_bits(gb, 4) + 1; + else + n = 16; + /* quality threshold table */ + for (i = 0; i < 64; i++) + s->coded_ac_scale_factor[i] = get_bits(gb, n); + + if (s->theora >= 0x030200) + n = get_bits(gb, 4) + 1; + else + n = 16; + /* dc scale factor table */ + for (i = 0; i < 64; i++) + s->coded_dc_scale_factor[i] = get_bits(gb, n); + + if (s->theora >= 0x030200) + matrices = get_bits(gb, 9) + 1; + else + matrices = 3; + + if(matrices > 384){ + av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n"); + return -1; + } + + for(n=0; n<matrices; n++){ + for (i = 0; i < 64; i++) + s->base_matrix[n][i]= get_bits(gb, 8); + } + + for (inter = 0; inter <= 1; inter++) { + for (plane = 0; plane <= 2; plane++) { + int newqr= 1; + if (inter || plane > 0) + newqr = get_bits1(gb); + if (!newqr) { + int qtj, plj; + if(inter && get_bits1(gb)){ + qtj = 0; + plj = plane; + }else{ + qtj= (3*inter + plane - 1) / 3; + plj= (plane + 2) % 3; + } + s->qr_count[inter][plane]= s->qr_count[qtj][plj]; + memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0])); + memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0])); + } else { + int qri= 0; + int qi = 0; + + for(;;){ + i= get_bits(gb, av_log2(matrices-1)+1); + if(i>= matrices){ + av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n"); + return -1; + } + s->qr_base[inter][plane][qri]= i; + if(qi >= 63) + break; + i = get_bits(gb, av_log2(63-qi)+1) + 1; + s->qr_size[inter][plane][qri++]= i; + qi += i; + } + + if (qi > 63) { + av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi); + return -1; + } + s->qr_count[inter][plane]= qri; + } + } + } + + /* Huffman tables */ + for (s->hti = 0; s->hti < 80; s->hti++) { + s->entries = 0; + s->huff_code_size = 1; + if (!get_bits1(gb)) { + s->hbits = 0; + if(read_huffman_tree(avctx, gb)) + return -1; + s->hbits = 1; + if(read_huffman_tree(avctx, gb)) + return -1; + } + } + + s->theora_tables = 1; + + return 0; +} + +static av_cold int theora_decode_init(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + GetBitContext gb; + int ptype; + uint8_t *header_start[3]; + int header_len[3]; + int i; + + avctx->pix_fmt = AV_PIX_FMT_YUV420P; + + s->theora = 1; + + if (!avctx->extradata_size) + { + av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n"); + return -1; + } + + if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size, + 42, header_start, header_len) < 0) { + av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n"); + return -1; + } + + for(i=0;i<3;i++) { + if (header_len[i] <= 0) + continue; + init_get_bits(&gb, header_start[i], header_len[i] * 8); + + ptype = get_bits(&gb, 8); + + if (!(ptype & 0x80)) + { + av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n"); +// return -1; + } + + // FIXME: Check for this as well. + skip_bits_long(&gb, 6*8); /* "theora" */ + + switch(ptype) + { + case 0x80: + if (theora_decode_header(avctx, &gb) < 0) + return -1; + break; + case 0x81: +// FIXME: is this needed? it breaks sometimes +// theora_decode_comments(avctx, gb); + break; + case 0x82: + if (theora_decode_tables(avctx, &gb)) + return -1; + break; + default: + av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80); + break; + } + if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb)) + av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype); + if (s->theora < 0x030200) + break; + } + + return vp3_decode_init(avctx); +} + +AVCodec ff_theora_decoder = { + .name = "theora", + .type = AVMEDIA_TYPE_VIDEO, + .id = AV_CODEC_ID_THEORA, + .priv_data_size = sizeof(Vp3DecodeContext), + .init = theora_decode_init, + .close = vp3_decode_end, + .decode = vp3_decode_frame, + .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | + CODEC_CAP_FRAME_THREADS, + .flush = vp3_decode_flush, + .long_name = NULL_IF_CONFIG_SMALL("Theora"), + .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy), + .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context) +}; +#endif + +AVCodec ff_vp3_decoder = { + .name = "vp3", + .type = AVMEDIA_TYPE_VIDEO, + .id = AV_CODEC_ID_VP3, + .priv_data_size = sizeof(Vp3DecodeContext), + .init = vp3_decode_init, + .close = vp3_decode_end, + .decode = vp3_decode_frame, + .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | + CODEC_CAP_FRAME_THREADS, + .flush = vp3_decode_flush, + .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"), + .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy), + .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context), +}; |
