diff options
| author | Tim Redfern <tim@eclectronics.org> | 2013-09-05 17:55:35 +0100 |
|---|---|---|
| committer | Tim Redfern <tim@eclectronics.org> | 2013-09-05 17:55:35 +0100 |
| commit | 741fb4b9e135cfb161a749db88713229038577bb (patch) | |
| tree | 08bc9925659cbcac45162bacf31dc6336d4f60b4 /ffmpeg1/libavcodec/aacpsy.c | |
| parent | a2e1bf3495b7bfefdaedb8fc737e969ab06df079 (diff) | |
making act segmenter
Diffstat (limited to 'ffmpeg1/libavcodec/aacpsy.c')
| -rw-r--r-- | ffmpeg1/libavcodec/aacpsy.c | 940 |
1 files changed, 0 insertions, 940 deletions
diff --git a/ffmpeg1/libavcodec/aacpsy.c b/ffmpeg1/libavcodec/aacpsy.c deleted file mode 100644 index e399be5..0000000 --- a/ffmpeg1/libavcodec/aacpsy.c +++ /dev/null @@ -1,940 +0,0 @@ -/* - * AAC encoder psychoacoustic model - * Copyright (C) 2008 Konstantin Shishkov - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * AAC encoder psychoacoustic model - */ - -#include "libavutil/libm.h" - -#include "avcodec.h" -#include "aactab.h" -#include "psymodel.h" - -/*********************************** - * TODOs: - * try other bitrate controlling mechanism (maybe use ratecontrol.c?) - * control quality for quality-based output - **********************************/ - -/** - * constants for 3GPP AAC psychoacoustic model - * @{ - */ -#define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark) -#define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark) -/* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */ -#define PSY_3GPP_EN_SPREAD_HI_L1 2.0f -/* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */ -#define PSY_3GPP_EN_SPREAD_HI_L2 1.5f -/* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */ -#define PSY_3GPP_EN_SPREAD_HI_S 1.5f -/* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */ -#define PSY_3GPP_EN_SPREAD_LOW_L 3.0f -/* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */ -#define PSY_3GPP_EN_SPREAD_LOW_S 2.0f - -#define PSY_3GPP_RPEMIN 0.01f -#define PSY_3GPP_RPELEV 2.0f - -#define PSY_3GPP_C1 3.0f /* log2(8) */ -#define PSY_3GPP_C2 1.3219281f /* log2(2.5) */ -#define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */ - -#define PSY_SNR_1DB 7.9432821e-1f /* -1dB */ -#define PSY_SNR_25DB 3.1622776e-3f /* -25dB */ - -#define PSY_3GPP_SAVE_SLOPE_L -0.46666667f -#define PSY_3GPP_SAVE_SLOPE_S -0.36363637f -#define PSY_3GPP_SAVE_ADD_L -0.84285712f -#define PSY_3GPP_SAVE_ADD_S -0.75f -#define PSY_3GPP_SPEND_SLOPE_L 0.66666669f -#define PSY_3GPP_SPEND_SLOPE_S 0.81818181f -#define PSY_3GPP_SPEND_ADD_L -0.35f -#define PSY_3GPP_SPEND_ADD_S -0.26111111f -#define PSY_3GPP_CLIP_LO_L 0.2f -#define PSY_3GPP_CLIP_LO_S 0.2f -#define PSY_3GPP_CLIP_HI_L 0.95f -#define PSY_3GPP_CLIP_HI_S 0.75f - -#define PSY_3GPP_AH_THR_LONG 0.5f -#define PSY_3GPP_AH_THR_SHORT 0.63f - -enum { - PSY_3GPP_AH_NONE, - PSY_3GPP_AH_INACTIVE, - PSY_3GPP_AH_ACTIVE -}; - -#define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f) - -/* LAME psy model constants */ -#define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order -#define AAC_BLOCK_SIZE_LONG 1024 ///< long block size -#define AAC_BLOCK_SIZE_SHORT 128 ///< short block size -#define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence -#define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block - -/** - * @} - */ - -/** - * information for single band used by 3GPP TS26.403-inspired psychoacoustic model - */ -typedef struct AacPsyBand{ - float energy; ///< band energy - float thr; ///< energy threshold - float thr_quiet; ///< threshold in quiet - float nz_lines; ///< number of non-zero spectral lines - float active_lines; ///< number of active spectral lines - float pe; ///< perceptual entropy - float pe_const; ///< constant part of the PE calculation - float norm_fac; ///< normalization factor for linearization - int avoid_holes; ///< hole avoidance flag -}AacPsyBand; - -/** - * single/pair channel context for psychoacoustic model - */ -typedef struct AacPsyChannel{ - AacPsyBand band[128]; ///< bands information - AacPsyBand prev_band[128]; ///< bands information from the previous frame - - float win_energy; ///< sliding average of channel energy - float iir_state[2]; ///< hi-pass IIR filter state - uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence) - enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame - /* LAME psy model specific members */ - float attack_threshold; ///< attack threshold for this channel - float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS]; - int prev_attack; ///< attack value for the last short block in the previous sequence -}AacPsyChannel; - -/** - * psychoacoustic model frame type-dependent coefficients - */ -typedef struct AacPsyCoeffs{ - float ath; ///< absolute threshold of hearing per bands - float barks; ///< Bark value for each spectral band in long frame - float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame - float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame - float min_snr; ///< minimal SNR -}AacPsyCoeffs; - -/** - * 3GPP TS26.403-inspired psychoacoustic model specific data - */ -typedef struct AacPsyContext{ - int chan_bitrate; ///< bitrate per channel - int frame_bits; ///< average bits per frame - int fill_level; ///< bit reservoir fill level - struct { - float min; ///< minimum allowed PE for bit factor calculation - float max; ///< maximum allowed PE for bit factor calculation - float previous; ///< allowed PE of the previous frame - float correction; ///< PE correction factor - } pe; - AacPsyCoeffs psy_coef[2][64]; - AacPsyChannel *ch; -}AacPsyContext; - -/** - * LAME psy model preset struct - */ -typedef struct { - int quality; ///< Quality to map the rest of the vaules to. - /* This is overloaded to be both kbps per channel in ABR mode, and - * requested quality in constant quality mode. - */ - float st_lrm; ///< short threshold for L, R, and M channels -} PsyLamePreset; - -/** - * LAME psy model preset table for ABR - */ -static const PsyLamePreset psy_abr_map[] = { -/* TODO: Tuning. These were taken from LAME. */ -/* kbps/ch st_lrm */ - { 8, 6.60}, - { 16, 6.60}, - { 24, 6.60}, - { 32, 6.60}, - { 40, 6.60}, - { 48, 6.60}, - { 56, 6.60}, - { 64, 6.40}, - { 80, 6.00}, - { 96, 5.60}, - {112, 5.20}, - {128, 5.20}, - {160, 5.20} -}; - -/** -* LAME psy model preset table for constant quality -*/ -static const PsyLamePreset psy_vbr_map[] = { -/* vbr_q st_lrm */ - { 0, 4.20}, - { 1, 4.20}, - { 2, 4.20}, - { 3, 4.20}, - { 4, 4.20}, - { 5, 4.20}, - { 6, 4.20}, - { 7, 4.20}, - { 8, 4.20}, - { 9, 4.20}, - {10, 4.20} -}; - -/** - * LAME psy model FIR coefficient table - */ -static const float psy_fir_coeffs[] = { - -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2, - -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2, - -5.52212e-17 * 2, -0.313819 * 2 -}; - -/** - * Calculate the ABR attack threshold from the above LAME psymodel table. - */ -static float lame_calc_attack_threshold(int bitrate) -{ - /* Assume max bitrate to start with */ - int lower_range = 12, upper_range = 12; - int lower_range_kbps = psy_abr_map[12].quality; - int upper_range_kbps = psy_abr_map[12].quality; - int i; - - /* Determine which bitrates the value specified falls between. - * If the loop ends without breaking our above assumption of 320kbps was correct. - */ - for (i = 1; i < 13; i++) { - if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) { - upper_range = i; - upper_range_kbps = psy_abr_map[i ].quality; - lower_range = i - 1; - lower_range_kbps = psy_abr_map[i - 1].quality; - break; /* Upper range found */ - } - } - - /* Determine which range the value specified is closer to */ - if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps)) - return psy_abr_map[lower_range].st_lrm; - return psy_abr_map[upper_range].st_lrm; -} - -/** - * LAME psy model specific initialization - */ -static void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) { - int i, j; - - for (i = 0; i < avctx->channels; i++) { - AacPsyChannel *pch = &ctx->ch[i]; - - if (avctx->flags & CODEC_FLAG_QSCALE) - pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm; - else - pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000); - - for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++) - pch->prev_energy_subshort[j] = 10.0f; - } -} - -/** - * Calculate Bark value for given line. - */ -static av_cold float calc_bark(float f) -{ - return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f)); -} - -#define ATH_ADD 4 -/** - * Calculate ATH value for given frequency. - * Borrowed from Lame. - */ -static av_cold float ath(float f, float add) -{ - f /= 1000.0f; - return 3.64 * pow(f, -0.8) - - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4)) - + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7)) - + (0.6 + 0.04 * add) * 0.001 * f * f * f * f; -} - -static av_cold int psy_3gpp_init(FFPsyContext *ctx) { - AacPsyContext *pctx; - float bark; - int i, j, g, start; - float prev, minscale, minath, minsnr, pe_min; - const int chan_bitrate = ctx->avctx->bit_rate / ctx->avctx->channels; - const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : AAC_CUTOFF(ctx->avctx); - const float num_bark = calc_bark((float)bandwidth); - - ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); - pctx = (AacPsyContext*) ctx->model_priv_data; - - pctx->chan_bitrate = chan_bitrate; - pctx->frame_bits = chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate; - pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); - pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); - ctx->bitres.size = 6144 - pctx->frame_bits; - ctx->bitres.size -= ctx->bitres.size % 8; - pctx->fill_level = ctx->bitres.size; - minath = ath(3410, ATH_ADD); - for (j = 0; j < 2; j++) { - AacPsyCoeffs *coeffs = pctx->psy_coef[j]; - const uint8_t *band_sizes = ctx->bands[j]; - float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f); - float avg_chan_bits = chan_bitrate / ctx->avctx->sample_rate * (j ? 128.0f : 1024.0f); - /* reference encoder uses 2.4% here instead of 60% like the spec says */ - float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark; - float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L; - /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */ - float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1; - - i = 0; - prev = 0.0; - for (g = 0; g < ctx->num_bands[j]; g++) { - i += band_sizes[g]; - bark = calc_bark((i-1) * line_to_frequency); - coeffs[g].barks = (bark + prev) / 2.0; - prev = bark; - } - for (g = 0; g < ctx->num_bands[j] - 1; g++) { - AacPsyCoeffs *coeff = &coeffs[g]; - float bark_width = coeffs[g+1].barks - coeffs->barks; - coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW); - coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI); - coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low); - coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi); - pe_min = bark_pe * bark_width; - minsnr = exp2(pe_min / band_sizes[g]) - 1.5f; - coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB); - } - start = 0; - for (g = 0; g < ctx->num_bands[j]; g++) { - minscale = ath(start * line_to_frequency, ATH_ADD); - for (i = 1; i < band_sizes[g]; i++) - minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD)); - coeffs[g].ath = minscale - minath; - start += band_sizes[g]; - } - } - - pctx->ch = av_mallocz(sizeof(AacPsyChannel) * ctx->avctx->channels); - - lame_window_init(pctx, ctx->avctx); - - return 0; -} - -/** - * IIR filter used in block switching decision - */ -static float iir_filter(int in, float state[2]) -{ - float ret; - - ret = 0.7548f * (in - state[0]) + 0.5095f * state[1]; - state[0] = in; - state[1] = ret; - return ret; -} - -/** - * window grouping information stored as bits (0 - new group, 1 - group continues) - */ -static const uint8_t window_grouping[9] = { - 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36 -}; - -/** - * Tell encoder which window types to use. - * @see 3GPP TS26.403 5.4.1 "Blockswitching" - */ -static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, - const int16_t *audio, - const int16_t *la, - int channel, int prev_type) -{ - int i, j; - int br = ctx->avctx->bit_rate / ctx->avctx->channels; - int attack_ratio = br <= 16000 ? 18 : 10; - AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; - AacPsyChannel *pch = &pctx->ch[channel]; - uint8_t grouping = 0; - int next_type = pch->next_window_seq; - FFPsyWindowInfo wi = { { 0 } }; - - if (la) { - float s[8], v; - int switch_to_eight = 0; - float sum = 0.0, sum2 = 0.0; - int attack_n = 0; - int stay_short = 0; - for (i = 0; i < 8; i++) { - for (j = 0; j < 128; j++) { - v = iir_filter(la[i*128+j], pch->iir_state); - sum += v*v; - } - s[i] = sum; - sum2 += sum; - } - for (i = 0; i < 8; i++) { - if (s[i] > pch->win_energy * attack_ratio) { - attack_n = i + 1; - switch_to_eight = 1; - break; - } - } - pch->win_energy = pch->win_energy*7/8 + sum2/64; - - wi.window_type[1] = prev_type; - switch (prev_type) { - case ONLY_LONG_SEQUENCE: - wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; - next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; - break; - case LONG_START_SEQUENCE: - wi.window_type[0] = EIGHT_SHORT_SEQUENCE; - grouping = pch->next_grouping; - next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; - break; - case LONG_STOP_SEQUENCE: - wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; - next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; - break; - case EIGHT_SHORT_SEQUENCE: - stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight; - wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; - grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0; - next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; - break; - } - - pch->next_grouping = window_grouping[attack_n]; - pch->next_window_seq = next_type; - } else { - for (i = 0; i < 3; i++) - wi.window_type[i] = prev_type; - grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; - } - - wi.window_shape = 1; - if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { - wi.num_windows = 1; - wi.grouping[0] = 1; - } else { - int lastgrp = 0; - wi.num_windows = 8; - for (i = 0; i < 8; i++) { - if (!((grouping >> i) & 1)) - lastgrp = i; - wi.grouping[lastgrp]++; - } - } - - return wi; -} - -/* 5.6.1.2 "Calculation of Bit Demand" */ -static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, - int short_window) -{ - const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L; - const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L; - const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L; - const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L; - const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L; - const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L; - float clipped_pe, bit_save, bit_spend, bit_factor, fill_level; - - ctx->fill_level += ctx->frame_bits - bits; - ctx->fill_level = av_clip(ctx->fill_level, 0, size); - fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high); - clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max); - bit_save = (fill_level + bitsave_add) * bitsave_slope; - assert(bit_save <= 0.3f && bit_save >= -0.05000001f); - bit_spend = (fill_level + bitspend_add) * bitspend_slope; - assert(bit_spend <= 0.5f && bit_spend >= -0.1f); - /* The bit factor graph in the spec is obviously incorrect. - * bit_spend + ((bit_spend - bit_spend))... - * The reference encoder subtracts everything from 1, but also seems incorrect. - * 1 - bit_save + ((bit_spend + bit_save))... - * Hopefully below is correct. - */ - bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min); - /* NOTE: The reference encoder attempts to center pe max/min around the current pe. */ - ctx->pe.max = FFMAX(pe, ctx->pe.max); - ctx->pe.min = FFMIN(pe, ctx->pe.min); - - return FFMIN(ctx->frame_bits * bit_factor, ctx->frame_bits + size - bits); -} - -static float calc_pe_3gpp(AacPsyBand *band) -{ - float pe, a; - - band->pe = 0.0f; - band->pe_const = 0.0f; - band->active_lines = 0.0f; - if (band->energy > band->thr) { - a = log2f(band->energy); - pe = a - log2f(band->thr); - band->active_lines = band->nz_lines; - if (pe < PSY_3GPP_C1) { - pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2; - a = a * PSY_3GPP_C3 + PSY_3GPP_C2; - band->active_lines *= PSY_3GPP_C3; - } - band->pe = pe * band->nz_lines; - band->pe_const = a * band->nz_lines; - } - - return band->pe; -} - -static float calc_reduction_3gpp(float a, float desired_pe, float pe, - float active_lines) -{ - float thr_avg, reduction; - - if(active_lines == 0.0) - return 0; - - thr_avg = exp2f((a - pe) / (4.0f * active_lines)); - reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg; - - return FFMAX(reduction, 0.0f); -} - -static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, - float reduction) -{ - float thr = band->thr; - - if (band->energy > thr) { - thr = sqrtf(thr); - thr = sqrtf(thr) + reduction; - thr *= thr; - thr *= thr; - - /* This deviates from the 3GPP spec to match the reference encoder. - * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands - * that have hole avoidance on (active or inactive). It always reduces the - * threshold of bands with hole avoidance off. - */ - if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) { - thr = FFMAX(band->thr, band->energy * min_snr); - band->avoid_holes = PSY_3GPP_AH_ACTIVE; - } - } - - return thr; -} - -/** - * Calculate band thresholds as suggested in 3GPP TS26.403 - */ -static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel, - const float *coefs, const FFPsyWindowInfo *wi) -{ - AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; - AacPsyChannel *pch = &pctx->ch[channel]; - int start = 0; - int i, w, g; - float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0}; - float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f; - float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f); - const int num_bands = ctx->num_bands[wi->num_windows == 8]; - const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; - AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; - const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG; - - //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" - for (w = 0; w < wi->num_windows*16; w += 16) { - for (g = 0; g < num_bands; g++) { - AacPsyBand *band = &pch->band[w+g]; - - float form_factor = 0.0f; - float Temp; - band->energy = 0.0f; - for (i = 0; i < band_sizes[g]; i++) { - band->energy += coefs[start+i] * coefs[start+i]; - form_factor += sqrtf(fabs(coefs[start+i])); - } - Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0; - band->thr = band->energy * 0.001258925f; - band->nz_lines = form_factor * sqrtf(Temp); - - start += band_sizes[g]; - } - } - //modify thresholds and energies - spread, threshold in quiet, pre-echo control - for (w = 0; w < wi->num_windows*16; w += 16) { - AacPsyBand *bands = &pch->band[w]; - - /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */ - spread_en[0] = bands[0].energy; - for (g = 1; g < num_bands; g++) { - bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]); - spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]); - } - for (g = num_bands - 2; g >= 0; g--) { - bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]); - spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]); - } - //5.4.2.4 "Threshold in quiet" - for (g = 0; g < num_bands; g++) { - AacPsyBand *band = &bands[g]; - - band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath); - //5.4.2.5 "Pre-echo control" - if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w))) - band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr, - PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); - - /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */ - pe += calc_pe_3gpp(band); - a += band->pe_const; - active_lines += band->active_lines; - - /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */ - if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f) - band->avoid_holes = PSY_3GPP_AH_NONE; - else - band->avoid_holes = PSY_3GPP_AH_INACTIVE; - } - } - - /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */ - ctx->ch[channel].entropy = pe; - desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8); - desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); - /* NOTE: PE correction is kept simple. During initial testing it had very - * little effect on the final bitrate. Probably a good idea to come - * back and do more testing later. - */ - if (ctx->bitres.bits > 0) - desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits), - 0.85f, 1.15f); - pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits); - - if (desired_pe < pe) { - /* 5.6.1.3.4 "First Estimation of the reduction value" */ - for (w = 0; w < wi->num_windows*16; w += 16) { - reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines); - pe = 0.0f; - a = 0.0f; - active_lines = 0.0f; - for (g = 0; g < num_bands; g++) { - AacPsyBand *band = &pch->band[w+g]; - - band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); - /* recalculate PE */ - pe += calc_pe_3gpp(band); - a += band->pe_const; - active_lines += band->active_lines; - } - } - - /* 5.6.1.3.5 "Second Estimation of the reduction value" */ - for (i = 0; i < 2; i++) { - float pe_no_ah = 0.0f, desired_pe_no_ah; - active_lines = a = 0.0f; - for (w = 0; w < wi->num_windows*16; w += 16) { - for (g = 0; g < num_bands; g++) { - AacPsyBand *band = &pch->band[w+g]; - - if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) { - pe_no_ah += band->pe; - a += band->pe_const; - active_lines += band->active_lines; - } - } - } - desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f); - if (active_lines > 0.0f) - reduction += calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines); - - pe = 0.0f; - for (w = 0; w < wi->num_windows*16; w += 16) { - for (g = 0; g < num_bands; g++) { - AacPsyBand *band = &pch->band[w+g]; - - if (active_lines > 0.0f) - band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); - pe += calc_pe_3gpp(band); - band->norm_fac = band->active_lines / band->thr; - norm_fac += band->norm_fac; - } - } - delta_pe = desired_pe - pe; - if (fabs(delta_pe) > 0.05f * desired_pe) - break; - } - - if (pe < 1.15f * desired_pe) { - /* 6.6.1.3.6 "Final threshold modification by linearization" */ - norm_fac = 1.0f / norm_fac; - for (w = 0; w < wi->num_windows*16; w += 16) { - for (g = 0; g < num_bands; g++) { - AacPsyBand *band = &pch->band[w+g]; - - if (band->active_lines > 0.5f) { - float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe; - float thr = band->thr; - - thr *= exp2f(delta_sfb_pe / band->active_lines); - if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE) - thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy); - band->thr = thr; - } - } - } - } else { - /* 5.6.1.3.7 "Further perceptual entropy reduction" */ - g = num_bands; - while (pe > desired_pe && g--) { - for (w = 0; w < wi->num_windows*16; w+= 16) { - AacPsyBand *band = &pch->band[w+g]; - if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) { - coeffs[g].min_snr = PSY_SNR_1DB; - band->thr = band->energy * PSY_SNR_1DB; - pe += band->active_lines * 1.5f - band->pe; - } - } - } - /* TODO: allow more holes (unused without mid/side) */ - } - } - - for (w = 0; w < wi->num_windows*16; w += 16) { - for (g = 0; g < num_bands; g++) { - AacPsyBand *band = &pch->band[w+g]; - FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g]; - - psy_band->threshold = band->thr; - psy_band->energy = band->energy; - } - } - - memcpy(pch->prev_band, pch->band, sizeof(pch->band)); -} - -static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, - const float **coeffs, const FFPsyWindowInfo *wi) -{ - int ch; - FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel); - - for (ch = 0; ch < group->num_ch; ch++) - psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]); -} - -static av_cold void psy_3gpp_end(FFPsyContext *apc) -{ - AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data; - av_freep(&pctx->ch); - av_freep(&apc->model_priv_data); -} - -static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock) -{ - int blocktype = ONLY_LONG_SEQUENCE; - if (uselongblock) { - if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE) - blocktype = LONG_STOP_SEQUENCE; - } else { - blocktype = EIGHT_SHORT_SEQUENCE; - if (ctx->next_window_seq == ONLY_LONG_SEQUENCE) - ctx->next_window_seq = LONG_START_SEQUENCE; - if (ctx->next_window_seq == LONG_STOP_SEQUENCE) - ctx->next_window_seq = EIGHT_SHORT_SEQUENCE; - } - - wi->window_type[0] = ctx->next_window_seq; - ctx->next_window_seq = blocktype; -} - -static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio, - const float *la, int channel, int prev_type) -{ - AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; - AacPsyChannel *pch = &pctx->ch[channel]; - int grouping = 0; - int uselongblock = 1; - int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; - int i; - FFPsyWindowInfo wi = { { 0 } }; - - if (la) { - float hpfsmpl[AAC_BLOCK_SIZE_LONG]; - float const *pf = hpfsmpl; - float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; - float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; - float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; - const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN); - int j, att_sum = 0; - - /* LAME comment: apply high pass filter of fs/4 */ - for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) { - float sum1, sum2; - sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2]; - sum2 = 0.0; - for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) { - sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]); - sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]); - } - /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768. Tuning this for normalized floats would be difficult. */ - hpfsmpl[i] = (sum1 + sum2) * 32768.0f; - } - - /* Calculate the energies of each sub-shortblock */ - for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) { - energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)]; - assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0); - attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)]; - energy_short[0] += energy_subshort[i]; - } - - for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) { - float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS); - float p = 1.0f; - for (; pf < pfe; pf++) - p = FFMAX(p, fabsf(*pf)); - pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p; - energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p; - /* NOTE: The indexes below are [i + 3 - 2] in the LAME source. - * Obviously the 3 and 2 have some significance, or this would be just [i + 1] - * (which is what we use here). What the 3 stands for is ambiguous, as it is both - * number of short blocks, and the number of sub-short blocks. - * It seems that LAME is comparing each sub-block to sub-block + 1 in the - * previous block. - */ - if (p > energy_subshort[i + 1]) - p = p / energy_subshort[i + 1]; - else if (energy_subshort[i + 1] > p * 10.0f) - p = energy_subshort[i + 1] / (p * 10.0f); - else - p = 0.0; - attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p; - } - - /* compare energy between sub-short blocks */ - for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++) - if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS]) - if (attack_intensity[i] > pch->attack_threshold) - attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1; - - /* should have energy change between short blocks, in order to avoid periodic signals */ - /* Good samples to show the effect are Trumpet test songs */ - /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */ - /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */ - for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) { - float const u = energy_short[i - 1]; - float const v = energy_short[i]; - float const m = FFMAX(u, v); - if (m < 40000) { /* (2) */ - if (u < 1.7f * v && v < 1.7f * u) { /* (1) */ - if (i == 1 && attacks[0] < attacks[i]) - attacks[0] = 0; - attacks[i] = 0; - } - } - att_sum += attacks[i]; - } - - if (attacks[0] <= pch->prev_attack) - attacks[0] = 0; - - att_sum += attacks[0]; - /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */ - if (pch->prev_attack == 3 || att_sum) { - uselongblock = 0; - - for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) - if (attacks[i] && attacks[i-1]) - attacks[i] = 0; - } - } else { - /* We have no lookahead info, so just use same type as the previous sequence. */ - uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE); - } - - lame_apply_block_type(pch, &wi, uselongblock); - - wi.window_type[1] = prev_type; - if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { - wi.num_windows = 1; - wi.grouping[0] = 1; - if (wi.window_type[0] == LONG_START_SEQUENCE) - wi.window_shape = 0; - else - wi.window_shape = 1; - } else { - int lastgrp = 0; - - wi.num_windows = 8; - wi.window_shape = 0; - for (i = 0; i < 8; i++) { - if (!((pch->next_grouping >> i) & 1)) - lastgrp = i; - wi.grouping[lastgrp]++; - } - } - - /* Determine grouping, based on the location of the first attack, and save for - * the next frame. - * FIXME: Move this to analysis. - * TODO: Tune groupings depending on attack location - * TODO: Handle more than one attack in a group - */ - for (i = 0; i < 9; i++) { - if (attacks[i]) { - grouping = i; - break; - } - } - pch->next_grouping = window_grouping[grouping]; - - pch->prev_attack = attacks[8]; - - return wi; -} - -const FFPsyModel ff_aac_psy_model = -{ - .name = "3GPP TS 26.403-inspired model", - .init = psy_3gpp_init, - .window = psy_lame_window, - .analyze = psy_3gpp_analyze, - .end = psy_3gpp_end, -}; |
