diff options
| author | Tim Redfern <tim@eclectronics.org> | 2013-08-26 15:10:18 +0100 |
|---|---|---|
| committer | Tim Redfern <tim@eclectronics.org> | 2013-08-26 15:10:18 +0100 |
| commit | 150c9823e71a161e97003849cf8b2f55b21520bd (patch) | |
| tree | 3559c840cf403d1386708b2591d58f928c7b160d /ffmpeg1/libavcodec/adpcm.c | |
| parent | b4b1e2630c95d5e6014463f7608d59dc2322a3b8 (diff) | |
adding ffmpeg specific version
Diffstat (limited to 'ffmpeg1/libavcodec/adpcm.c')
| -rw-r--r-- | ffmpeg1/libavcodec/adpcm.c | 1432 |
1 files changed, 1432 insertions, 0 deletions
diff --git a/ffmpeg1/libavcodec/adpcm.c b/ffmpeg1/libavcodec/adpcm.c new file mode 100644 index 0000000..3f8cfbc --- /dev/null +++ b/ffmpeg1/libavcodec/adpcm.c @@ -0,0 +1,1432 @@ +/* + * Copyright (c) 2001-2003 The ffmpeg Project + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ +#include "avcodec.h" +#include "get_bits.h" +#include "put_bits.h" +#include "bytestream.h" +#include "adpcm.h" +#include "adpcm_data.h" +#include "internal.h" + +/** + * @file + * ADPCM decoders + * First version by Francois Revol (revol@free.fr) + * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood) + * by Mike Melanson (melanson@pcisys.net) + * CD-ROM XA ADPCM codec by BERO + * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com) + * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org) + * EA IMA EACS decoder by Peter Ross (pross@xvid.org) + * EA IMA SEAD decoder by Peter Ross (pross@xvid.org) + * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org) + * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com) + * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl) + * + * Features and limitations: + * + * Reference documents: + * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs + * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead] + * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead] + * http://openquicktime.sourceforge.net/ + * XAnim sources (xa_codec.c) http://xanim.polter.net/ + * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead] + * SoX source code http://sox.sourceforge.net/ + * + * CD-ROM XA: + * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead] + * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead] + * readstr http://www.geocities.co.jp/Playtown/2004/ + */ + +/* These are for CD-ROM XA ADPCM */ +static const int xa_adpcm_table[5][2] = { + { 0, 0 }, + { 60, 0 }, + { 115, -52 }, + { 98, -55 }, + { 122, -60 } +}; + +static const int ea_adpcm_table[] = { + 0, 240, 460, 392, + 0, 0, -208, -220, + 0, 1, 3, 4, + 7, 8, 10, 11, + 0, -1, -3, -4 +}; + +// padded to zero where table size is less then 16 +static const int swf_index_tables[4][16] = { + /*2*/ { -1, 2 }, + /*3*/ { -1, -1, 2, 4 }, + /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 }, + /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 } +}; + +/* end of tables */ + +typedef struct ADPCMDecodeContext { + ADPCMChannelStatus status[6]; + int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */ +} ADPCMDecodeContext; + +static av_cold int adpcm_decode_init(AVCodecContext * avctx) +{ + ADPCMDecodeContext *c = avctx->priv_data; + unsigned int min_channels = 1; + unsigned int max_channels = 2; + + switch(avctx->codec->id) { + case AV_CODEC_ID_ADPCM_EA: + min_channels = 2; + break; + case AV_CODEC_ID_ADPCM_AFC: + case AV_CODEC_ID_ADPCM_EA_R1: + case AV_CODEC_ID_ADPCM_EA_R2: + case AV_CODEC_ID_ADPCM_EA_R3: + case AV_CODEC_ID_ADPCM_EA_XAS: + case AV_CODEC_ID_ADPCM_THP: + max_channels = 6; + break; + } + if (avctx->channels < min_channels || avctx->channels > max_channels) { + av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n"); + return AVERROR(EINVAL); + } + + switch(avctx->codec->id) { + case AV_CODEC_ID_ADPCM_CT: + c->status[0].step = c->status[1].step = 511; + break; + case AV_CODEC_ID_ADPCM_IMA_WAV: + if (avctx->bits_per_coded_sample != 4) { + av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n"); + return -1; + } + break; + case AV_CODEC_ID_ADPCM_IMA_APC: + if (avctx->extradata && avctx->extradata_size >= 8) { + c->status[0].predictor = AV_RL32(avctx->extradata); + c->status[1].predictor = AV_RL32(avctx->extradata + 4); + } + break; + case AV_CODEC_ID_ADPCM_IMA_WS: + if (avctx->extradata && avctx->extradata_size >= 2) + c->vqa_version = AV_RL16(avctx->extradata); + break; + default: + break; + } + + switch(avctx->codec->id) { + case AV_CODEC_ID_ADPCM_IMA_QT: + case AV_CODEC_ID_ADPCM_IMA_WAV: + case AV_CODEC_ID_ADPCM_4XM: + case AV_CODEC_ID_ADPCM_XA: + case AV_CODEC_ID_ADPCM_EA_R1: + case AV_CODEC_ID_ADPCM_EA_R2: + case AV_CODEC_ID_ADPCM_EA_R3: + case AV_CODEC_ID_ADPCM_EA_XAS: + case AV_CODEC_ID_ADPCM_THP: + case AV_CODEC_ID_ADPCM_AFC: + avctx->sample_fmt = AV_SAMPLE_FMT_S16P; + break; + case AV_CODEC_ID_ADPCM_IMA_WS: + avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P : + AV_SAMPLE_FMT_S16; + break; + default: + avctx->sample_fmt = AV_SAMPLE_FMT_S16; + } + + return 0; +} + +static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift) +{ + int step_index; + int predictor; + int sign, delta, diff, step; + + step = ff_adpcm_step_table[c->step_index]; + step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble]; + step_index = av_clip(step_index, 0, 88); + + sign = nibble & 8; + delta = nibble & 7; + /* perform direct multiplication instead of series of jumps proposed by + * the reference ADPCM implementation since modern CPUs can do the mults + * quickly enough */ + diff = ((2 * delta + 1) * step) >> shift; + predictor = c->predictor; + if (sign) predictor -= diff; + else predictor += diff; + + c->predictor = av_clip_int16(predictor); + c->step_index = step_index; + + return (short)c->predictor; +} + +static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift) +{ + int step_index; + int predictor; + int diff, step; + + step = ff_adpcm_step_table[c->step_index]; + step_index = c->step_index + ff_adpcm_index_table[nibble]; + step_index = av_clip(step_index, 0, 88); + + diff = step >> 3; + if (nibble & 4) diff += step; + if (nibble & 2) diff += step >> 1; + if (nibble & 1) diff += step >> 2; + + if (nibble & 8) + predictor = c->predictor - diff; + else + predictor = c->predictor + diff; + + c->predictor = av_clip_int16(predictor); + c->step_index = step_index; + + return c->predictor; +} + +static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble) +{ + int predictor; + + predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64; + predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; + + c->sample2 = c->sample1; + c->sample1 = av_clip_int16(predictor); + c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8; + if (c->idelta < 16) c->idelta = 16; + + return c->sample1; +} + +static inline short adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble) +{ + int step_index, predictor, sign, delta, diff, step; + + step = ff_adpcm_oki_step_table[c->step_index]; + step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble]; + step_index = av_clip(step_index, 0, 48); + + sign = nibble & 8; + delta = nibble & 7; + diff = ((2 * delta + 1) * step) >> 3; + predictor = c->predictor; + if (sign) predictor -= diff; + else predictor += diff; + + c->predictor = av_clip(predictor, -2048, 2047); + c->step_index = step_index; + + return c->predictor << 4; +} + +static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) +{ + int sign, delta, diff; + int new_step; + + sign = nibble & 8; + delta = nibble & 7; + /* perform direct multiplication instead of series of jumps proposed by + * the reference ADPCM implementation since modern CPUs can do the mults + * quickly enough */ + diff = ((2 * delta + 1) * c->step) >> 3; + /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ + c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff); + c->predictor = av_clip_int16(c->predictor); + /* calculate new step and clamp it to range 511..32767 */ + new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8; + c->step = av_clip(new_step, 511, 32767); + + return (short)c->predictor; +} + +static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift) +{ + int sign, delta, diff; + + sign = nibble & (1<<(size-1)); + delta = nibble & ((1<<(size-1))-1); + diff = delta << (7 + c->step + shift); + + /* clamp result */ + c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256); + + /* calculate new step */ + if (delta >= (2*size - 3) && c->step < 3) + c->step++; + else if (delta == 0 && c->step > 0) + c->step--; + + return (short) c->predictor; +} + +static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble) +{ + if(!c->step) { + c->predictor = 0; + c->step = 127; + } + + c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8; + c->predictor = av_clip_int16(c->predictor); + c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8; + c->step = av_clip(c->step, 127, 24567); + return c->predictor; +} + +static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1, + const uint8_t *in, ADPCMChannelStatus *left, + ADPCMChannelStatus *right, int channels, int sample_offset) +{ + int i, j; + int shift,filter,f0,f1; + int s_1,s_2; + int d,s,t; + + out0 += sample_offset; + if (channels == 1) + out1 = out0 + 28; + else + out1 += sample_offset; + + for(i=0;i<4;i++) { + shift = 12 - (in[4+i*2] & 15); + filter = in[4+i*2] >> 4; + if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) { + avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter); + filter=0; + } + f0 = xa_adpcm_table[filter][0]; + f1 = xa_adpcm_table[filter][1]; + + s_1 = left->sample1; + s_2 = left->sample2; + + for(j=0;j<28;j++) { + d = in[16+i+j*4]; + + t = sign_extend(d, 4); + s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); + s_2 = s_1; + s_1 = av_clip_int16(s); + out0[j] = s_1; + } + + if (channels == 2) { + left->sample1 = s_1; + left->sample2 = s_2; + s_1 = right->sample1; + s_2 = right->sample2; + } + + shift = 12 - (in[5+i*2] & 15); + filter = in[5+i*2] >> 4; + if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) { + avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter); + filter=0; + } + + f0 = xa_adpcm_table[filter][0]; + f1 = xa_adpcm_table[filter][1]; + + for(j=0;j<28;j++) { + d = in[16+i+j*4]; + + t = sign_extend(d >> 4, 4); + s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); + s_2 = s_1; + s_1 = av_clip_int16(s); + out1[j] = s_1; + } + + if (channels == 2) { + right->sample1 = s_1; + right->sample2 = s_2; + } else { + left->sample1 = s_1; + left->sample2 = s_2; + } + + out0 += 28 * (3 - channels); + out1 += 28 * (3 - channels); + } + + return 0; +} + +static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples) +{ + ADPCMDecodeContext *c = avctx->priv_data; + GetBitContext gb; + const int *table; + int k0, signmask, nb_bits, count; + int size = buf_size*8; + int i; + + init_get_bits(&gb, buf, size); + + //read bits & initial values + nb_bits = get_bits(&gb, 2)+2; + table = swf_index_tables[nb_bits-2]; + k0 = 1 << (nb_bits-2); + signmask = 1 << (nb_bits-1); + + while (get_bits_count(&gb) <= size - 22*avctx->channels) { + for (i = 0; i < avctx->channels; i++) { + *samples++ = c->status[i].predictor = get_sbits(&gb, 16); + c->status[i].step_index = get_bits(&gb, 6); + } + + for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) { + int i; + + for (i = 0; i < avctx->channels; i++) { + // similar to IMA adpcm + int delta = get_bits(&gb, nb_bits); + int step = ff_adpcm_step_table[c->status[i].step_index]; + long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 + int k = k0; + + do { + if (delta & k) + vpdiff += step; + step >>= 1; + k >>= 1; + } while(k); + vpdiff += step; + + if (delta & signmask) + c->status[i].predictor -= vpdiff; + else + c->status[i].predictor += vpdiff; + + c->status[i].step_index += table[delta & (~signmask)]; + + c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); + c->status[i].predictor = av_clip_int16(c->status[i].predictor); + + *samples++ = c->status[i].predictor; + } + } + } +} + +/** + * Get the number of samples that will be decoded from the packet. + * In one case, this is actually the maximum number of samples possible to + * decode with the given buf_size. + * + * @param[out] coded_samples set to the number of samples as coded in the + * packet, or 0 if the codec does not encode the + * number of samples in each frame. + */ +static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb, + int buf_size, int *coded_samples) +{ + ADPCMDecodeContext *s = avctx->priv_data; + int nb_samples = 0; + int ch = avctx->channels; + int has_coded_samples = 0; + int header_size; + + *coded_samples = 0; + + if(ch <= 0) + return 0; + + switch (avctx->codec->id) { + /* constant, only check buf_size */ + case AV_CODEC_ID_ADPCM_EA_XAS: + if (buf_size < 76 * ch) + return 0; + nb_samples = 128; + break; + case AV_CODEC_ID_ADPCM_IMA_QT: + if (buf_size < 34 * ch) + return 0; + nb_samples = 64; + break; + /* simple 4-bit adpcm */ + case AV_CODEC_ID_ADPCM_CT: + case AV_CODEC_ID_ADPCM_IMA_APC: + case AV_CODEC_ID_ADPCM_IMA_EA_SEAD: + case AV_CODEC_ID_ADPCM_IMA_OKI: + case AV_CODEC_ID_ADPCM_IMA_WS: + case AV_CODEC_ID_ADPCM_YAMAHA: + nb_samples = buf_size * 2 / ch; + break; + } + if (nb_samples) + return nb_samples; + + /* simple 4-bit adpcm, with header */ + header_size = 0; + switch (avctx->codec->id) { + case AV_CODEC_ID_ADPCM_4XM: + case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break; + case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break; + case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break; + } + if (header_size > 0) + return (buf_size - header_size) * 2 / ch; + + /* more complex formats */ + switch (avctx->codec->id) { + case AV_CODEC_ID_ADPCM_EA: + has_coded_samples = 1; + *coded_samples = bytestream2_get_le32(gb); + *coded_samples -= *coded_samples % 28; + nb_samples = (buf_size - 12) / 30 * 28; + break; + case AV_CODEC_ID_ADPCM_IMA_EA_EACS: + has_coded_samples = 1; + *coded_samples = bytestream2_get_le32(gb); + nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch; + break; + case AV_CODEC_ID_ADPCM_EA_MAXIS_XA: + nb_samples = (buf_size - ch) / ch * 2; + break; + case AV_CODEC_ID_ADPCM_EA_R1: + case AV_CODEC_ID_ADPCM_EA_R2: + case AV_CODEC_ID_ADPCM_EA_R3: + /* maximum number of samples */ + /* has internal offsets and a per-frame switch to signal raw 16-bit */ + has_coded_samples = 1; + switch (avctx->codec->id) { + case AV_CODEC_ID_ADPCM_EA_R1: + header_size = 4 + 9 * ch; + *coded_samples = bytestream2_get_le32(gb); + break; + case AV_CODEC_ID_ADPCM_EA_R2: + header_size = 4 + 5 * ch; + *coded_samples = bytestream2_get_le32(gb); + break; + case AV_CODEC_ID_ADPCM_EA_R3: + header_size = 4 + 5 * ch; + *coded_samples = bytestream2_get_be32(gb); + break; + } + *coded_samples -= *coded_samples % 28; + nb_samples = (buf_size - header_size) * 2 / ch; + nb_samples -= nb_samples % 28; + break; + case AV_CODEC_ID_ADPCM_IMA_DK3: + if (avctx->block_align > 0) + buf_size = FFMIN(buf_size, avctx->block_align); + nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch; + break; + case AV_CODEC_ID_ADPCM_IMA_DK4: + if (avctx->block_align > 0) + buf_size = FFMIN(buf_size, avctx->block_align); + nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch; + break; + case AV_CODEC_ID_ADPCM_IMA_WAV: + if (avctx->block_align > 0) + buf_size = FFMIN(buf_size, avctx->block_align); + nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8; + break; + case AV_CODEC_ID_ADPCM_MS: + if (avctx->block_align > 0) + buf_size = FFMIN(buf_size, avctx->block_align); + nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch; + break; + case AV_CODEC_ID_ADPCM_SBPRO_2: + case AV_CODEC_ID_ADPCM_SBPRO_3: + case AV_CODEC_ID_ADPCM_SBPRO_4: + { + int samples_per_byte; + switch (avctx->codec->id) { + case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break; + case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break; + case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break; + } + if (!s->status[0].step_index) { + nb_samples++; + buf_size -= ch; + } + nb_samples += buf_size * samples_per_byte / ch; + break; + } + case AV_CODEC_ID_ADPCM_SWF: + { + int buf_bits = buf_size * 8 - 2; + int nbits = (bytestream2_get_byte(gb) >> 6) + 2; + int block_hdr_size = 22 * ch; + int block_size = block_hdr_size + nbits * ch * 4095; + int nblocks = buf_bits / block_size; + int bits_left = buf_bits - nblocks * block_size; + nb_samples = nblocks * 4096; + if (bits_left >= block_hdr_size) + nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch); + break; + } + case AV_CODEC_ID_ADPCM_THP: + has_coded_samples = 1; + bytestream2_skip(gb, 4); // channel size + *coded_samples = bytestream2_get_be32(gb); + *coded_samples -= *coded_samples % 14; + nb_samples = (buf_size - (8 + 36 * ch)) / (8 * ch) * 14; + break; + case AV_CODEC_ID_ADPCM_AFC: + nb_samples = buf_size / (9 * ch) * 16; + break; + case AV_CODEC_ID_ADPCM_XA: + nb_samples = (buf_size / 128) * 224 / ch; + break; + } + + /* validate coded sample count */ + if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples)) + return AVERROR_INVALIDDATA; + + return nb_samples; +} + +static int adpcm_decode_frame(AVCodecContext *avctx, void *data, + int *got_frame_ptr, AVPacket *avpkt) +{ + AVFrame *frame = data; + const uint8_t *buf = avpkt->data; + int buf_size = avpkt->size; + ADPCMDecodeContext *c = avctx->priv_data; + ADPCMChannelStatus *cs; + int n, m, channel, i; + short *samples; + int16_t **samples_p; + int st; /* stereo */ + int count1, count2; + int nb_samples, coded_samples, ret; + GetByteContext gb; + + bytestream2_init(&gb, buf, buf_size); + nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples); + if (nb_samples <= 0) { + av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n"); + return AVERROR_INVALIDDATA; + } + + /* get output buffer */ + frame->nb_samples = nb_samples; + if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) + return ret; + samples = (short *)frame->data[0]; + samples_p = (int16_t **)frame->extended_data; + + /* use coded_samples when applicable */ + /* it is always <= nb_samples, so the output buffer will be large enough */ + if (coded_samples) { + if (coded_samples != nb_samples) + av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n"); + frame->nb_samples = nb_samples = coded_samples; + } + + st = avctx->channels == 2 ? 1 : 0; + + switch(avctx->codec->id) { + case AV_CODEC_ID_ADPCM_IMA_QT: + /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples). + Channel data is interleaved per-chunk. */ + for (channel = 0; channel < avctx->channels; channel++) { + int predictor; + int step_index; + cs = &(c->status[channel]); + /* (pppppp) (piiiiiii) */ + + /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ + predictor = sign_extend(bytestream2_get_be16u(&gb), 16); + step_index = predictor & 0x7F; + predictor &= ~0x7F; + + if (cs->step_index == step_index) { + int diff = predictor - cs->predictor; + if (diff < 0) + diff = - diff; + if (diff > 0x7f) + goto update; + } else { + update: + cs->step_index = step_index; + cs->predictor = predictor; + } + + if (cs->step_index > 88u){ + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", + channel, cs->step_index); + return AVERROR_INVALIDDATA; + } + + samples = samples_p[channel]; + + for (m = 0; m < 64; m += 2) { + int byte = bytestream2_get_byteu(&gb); + samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3); + samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3); + } + } + break; + case AV_CODEC_ID_ADPCM_IMA_WAV: + for(i=0; i<avctx->channels; i++){ + cs = &(c->status[i]); + cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16); + + cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); + if (cs->step_index > 88u){ + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", + i, cs->step_index); + return AVERROR_INVALIDDATA; + } + } + + for (n = 0; n < (nb_samples - 1) / 8; n++) { + for (i = 0; i < avctx->channels; i++) { + cs = &c->status[i]; + samples = &samples_p[i][1 + n * 8]; + for (m = 0; m < 8; m += 2) { + int v = bytestream2_get_byteu(&gb); + samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3); + samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3); + } + } + } + break; + case AV_CODEC_ID_ADPCM_4XM: + for (i = 0; i < avctx->channels; i++) + c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); + + for (i = 0; i < avctx->channels; i++) { + c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16); + if (c->status[i].step_index > 88u) { + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", + i, c->status[i].step_index); + return AVERROR_INVALIDDATA; + } + } + + for (i = 0; i < avctx->channels; i++) { + samples = (int16_t *)frame->data[i]; + cs = &c->status[i]; + for (n = nb_samples >> 1; n > 0; n--) { + int v = bytestream2_get_byteu(&gb); + *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4); + *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4); + } + } + break; + case AV_CODEC_ID_ADPCM_MS: + { + int block_predictor; + + block_predictor = bytestream2_get_byteu(&gb); + if (block_predictor > 6) { + av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n", + block_predictor); + return AVERROR_INVALIDDATA; + } + c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor]; + c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor]; + if (st) { + block_predictor = bytestream2_get_byteu(&gb); + if (block_predictor > 6) { + av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n", + block_predictor); + return AVERROR_INVALIDDATA; + } + c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor]; + c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor]; + } + c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16); + if (st){ + c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16); + } + + c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16); + if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16); + c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16); + if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16); + + *samples++ = c->status[0].sample2; + if (st) *samples++ = c->status[1].sample2; + *samples++ = c->status[0].sample1; + if (st) *samples++ = c->status[1].sample1; + for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) { + int byte = bytestream2_get_byteu(&gb); + *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 ); + *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F); + } + break; + } + case AV_CODEC_ID_ADPCM_IMA_DK4: + for (channel = 0; channel < avctx->channels; channel++) { + cs = &c->status[channel]; + cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16); + cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); + if (cs->step_index > 88u){ + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", + channel, cs->step_index); + return AVERROR_INVALIDDATA; + } + } + for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) { + int v = bytestream2_get_byteu(&gb); + *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3); + *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3); + } + break; + case AV_CODEC_ID_ADPCM_IMA_DK3: + { + int last_byte = 0; + int nibble; + int decode_top_nibble_next = 0; + int diff_channel; + const int16_t *samples_end = samples + avctx->channels * nb_samples; + + bytestream2_skipu(&gb, 10); + c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); + c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); + c->status[0].step_index = bytestream2_get_byteu(&gb); + c->status[1].step_index = bytestream2_get_byteu(&gb); + if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){ + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n", + c->status[0].step_index, c->status[1].step_index); + return AVERROR_INVALIDDATA; + } + /* sign extend the predictors */ + diff_channel = c->status[1].predictor; + + /* DK3 ADPCM support macro */ +#define DK3_GET_NEXT_NIBBLE() \ + if (decode_top_nibble_next) { \ + nibble = last_byte >> 4; \ + decode_top_nibble_next = 0; \ + } else { \ + last_byte = bytestream2_get_byteu(&gb); \ + nibble = last_byte & 0x0F; \ + decode_top_nibble_next = 1; \ + } + + while (samples < samples_end) { + + /* for this algorithm, c->status[0] is the sum channel and + * c->status[1] is the diff channel */ + + /* process the first predictor of the sum channel */ + DK3_GET_NEXT_NIBBLE(); + adpcm_ima_expand_nibble(&c->status[0], nibble, 3); + + /* process the diff channel predictor */ + DK3_GET_NEXT_NIBBLE(); + adpcm_ima_expand_nibble(&c->status[1], nibble, 3); + + /* process the first pair of stereo PCM samples */ + diff_channel = (diff_channel + c->status[1].predictor) / 2; + *samples++ = c->status[0].predictor + c->status[1].predictor; + *samples++ = c->status[0].predictor - c->status[1].predictor; + + /* process the second predictor of the sum channel */ + DK3_GET_NEXT_NIBBLE(); + adpcm_ima_expand_nibble(&c->status[0], nibble, 3); + + /* process the second pair of stereo PCM samples */ + diff_channel = (diff_channel + c->status[1].predictor) / 2; + *samples++ = c->status[0].predictor + c->status[1].predictor; + *samples++ = c->status[0].predictor - c->status[1].predictor; + } + break; + } + case AV_CODEC_ID_ADPCM_IMA_ISS: + for (channel = 0; channel < avctx->channels; channel++) { + cs = &c->status[channel]; + cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16); + cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); + if (cs->step_index > 88u){ + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", + channel, cs->step_index); + return AVERROR_INVALIDDATA; + } + } + + for (n = nb_samples >> (1 - st); n > 0; n--) { + int v1, v2; + int v = bytestream2_get_byteu(&gb); + /* nibbles are swapped for mono */ + if (st) { + v1 = v >> 4; + v2 = v & 0x0F; + } else { + v2 = v >> 4; + v1 = v & 0x0F; + } + *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3); + *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3); + } + break; + case AV_CODEC_ID_ADPCM_IMA_APC: + while (bytestream2_get_bytes_left(&gb) > 0) { + int v = bytestream2_get_byteu(&gb); + *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3); + *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3); + } + break; + case AV_CODEC_ID_ADPCM_IMA_OKI: + while (bytestream2_get_bytes_left(&gb) > 0) { + int v = bytestream2_get_byteu(&gb); + *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 ); + *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F); + } + break; + case AV_CODEC_ID_ADPCM_IMA_WS: + if (c->vqa_version == 3) { + for (channel = 0; channel < avctx->channels; channel++) { + int16_t *smp = samples_p[channel]; + + for (n = nb_samples / 2; n > 0; n--) { + int v = bytestream2_get_byteu(&gb); + *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3); + *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3); + } + } + } else { + for (n = nb_samples / 2; n > 0; n--) { + for (channel = 0; channel < avctx->channels; channel++) { + int v = bytestream2_get_byteu(&gb); + *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3); + samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3); + } + samples += avctx->channels; + } + } + bytestream2_seek(&gb, 0, SEEK_END); + break; + case AV_CODEC_ID_ADPCM_XA: + { + int16_t *out0 = samples_p[0]; + int16_t *out1 = samples_p[1]; + int samples_per_block = 28 * (3 - avctx->channels) * 4; + int sample_offset = 0; + while (bytestream2_get_bytes_left(&gb) >= 128) { + if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb), + &c->status[0], &c->status[1], + avctx->channels, sample_offset)) < 0) + return ret; + bytestream2_skipu(&gb, 128); + sample_offset += samples_per_block; + } + break; + } + case AV_CODEC_ID_ADPCM_IMA_EA_EACS: + for (i=0; i<=st; i++) { + c->status[i].step_index = bytestream2_get_le32u(&gb); + if (c->status[i].step_index > 88u) { + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", + i, c->status[i].step_index); + return AVERROR_INVALIDDATA; + } + } + for (i=0; i<=st; i++) + c->status[i].predictor = bytestream2_get_le32u(&gb); + + for (n = nb_samples >> (1 - st); n > 0; n--) { + int byte = bytestream2_get_byteu(&gb); + *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3); + *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3); + } + break; + case AV_CODEC_ID_ADPCM_IMA_EA_SEAD: + for (n = nb_samples >> (1 - st); n > 0; n--) { + int byte = bytestream2_get_byteu(&gb); + *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6); + *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6); + } + break; + case AV_CODEC_ID_ADPCM_EA: + { + int previous_left_sample, previous_right_sample; + int current_left_sample, current_right_sample; + int next_left_sample, next_right_sample; + int coeff1l, coeff2l, coeff1r, coeff2r; + int shift_left, shift_right; + + /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces, + each coding 28 stereo samples. */ + + if(avctx->channels != 2) + return AVERROR_INVALIDDATA; + + current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16); + previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16); + current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16); + previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16); + + for (count1 = 0; count1 < nb_samples / 28; count1++) { + int byte = bytestream2_get_byteu(&gb); + coeff1l = ea_adpcm_table[ byte >> 4 ]; + coeff2l = ea_adpcm_table[(byte >> 4 ) + 4]; + coeff1r = ea_adpcm_table[ byte & 0x0F]; + coeff2r = ea_adpcm_table[(byte & 0x0F) + 4]; + + byte = bytestream2_get_byteu(&gb); + shift_left = 20 - (byte >> 4); + shift_right = 20 - (byte & 0x0F); + + for (count2 = 0; count2 < 28; count2++) { + byte = bytestream2_get_byteu(&gb); + next_left_sample = sign_extend(byte >> 4, 4) << shift_left; + next_right_sample = sign_extend(byte, 4) << shift_right; + + next_left_sample = (next_left_sample + + (current_left_sample * coeff1l) + + (previous_left_sample * coeff2l) + 0x80) >> 8; + next_right_sample = (next_right_sample + + (current_right_sample * coeff1r) + + (previous_right_sample * coeff2r) + 0x80) >> 8; + + previous_left_sample = current_left_sample; + current_left_sample = av_clip_int16(next_left_sample); + previous_right_sample = current_right_sample; + current_right_sample = av_clip_int16(next_right_sample); + *samples++ = current_left_sample; + *samples++ = current_right_sample; + } + } + + bytestream2_skip(&gb, 2); // Skip terminating 0x0000 + + break; + } + case AV_CODEC_ID_ADPCM_EA_MAXIS_XA: + { + int coeff[2][2], shift[2]; + + for(channel = 0; channel < avctx->channels; channel++) { + int byte = bytestream2_get_byteu(&gb); + for (i=0; i<2; i++) + coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i]; + shift[channel] = 20 - (byte & 0x0F); + } + for (count1 = 0; count1 < nb_samples / 2; count1++) { + int byte[2]; + + byte[0] = bytestream2_get_byteu(&gb); + if (st) byte[1] = bytestream2_get_byteu(&gb); + for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */ + for(channel = 0; channel < avctx->channels; channel++) { + int sample = sign_extend(byte[channel] >> i, 4) << shift[channel]; + sample = (sample + + c->status[channel].sample1 * coeff[channel][0] + + c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8; + c->status[channel].sample2 = c->status[channel].sample1; + c->status[channel].sample1 = av_clip_int16(sample); + *samples++ = c->status[channel].sample1; + } + } + } + bytestream2_seek(&gb, 0, SEEK_END); + break; + } + case AV_CODEC_ID_ADPCM_EA_R1: + case AV_CODEC_ID_ADPCM_EA_R2: + case AV_CODEC_ID_ADPCM_EA_R3: { + /* channel numbering + 2chan: 0=fl, 1=fr + 4chan: 0=fl, 1=rl, 2=fr, 3=rr + 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */ + const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3; + int previous_sample, current_sample, next_sample; + int coeff1, coeff2; + int shift; + unsigned int channel; + uint16_t *samplesC; + int count = 0; + int offsets[6]; + + for (channel=0; channel<avctx->channels; channel++) + offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) : + bytestream2_get_le32(&gb)) + + (avctx->channels + 1) * 4; + + for (channel=0; channel<avctx->channels; channel++) { + bytestream2_seek(&gb, offsets[channel], SEEK_SET); + samplesC = samples_p[channel]; + + if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) { + current_sample = sign_extend(bytestream2_get_le16(&gb), 16); + previous_sample = sign_extend(bytestream2_get_le16(&gb), 16); + } else { + current_sample = c->status[channel].predictor; + previous_sample = c->status[channel].prev_sample; + } + + for (count1 = 0; count1 < nb_samples / 28; count1++) { + int byte = bytestream2_get_byte(&gb); + if (byte == 0xEE) { /* only seen in R2 and R3 */ + current_sample = sign_extend(bytestream2_get_be16(&gb), 16); + previous_sample = sign_extend(bytestream2_get_be16(&gb), 16); + + for (count2=0; count2<28; count2++) + *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16); + } else { + coeff1 = ea_adpcm_table[ byte >> 4 ]; + coeff2 = ea_adpcm_table[(byte >> 4) + 4]; + shift = 20 - (byte & 0x0F); + + for (count2=0; count2<28; count2++) { + if (count2 & 1) + next_sample = sign_extend(byte, 4) << shift; + else { + byte = bytestream2_get_byte(&gb); + next_sample = sign_extend(byte >> 4, 4) << shift; + } + + next_sample += (current_sample * coeff1) + + (previous_sample * coeff2); + next_sample = av_clip_int16(next_sample >> 8); + + previous_sample = current_sample; + current_sample = next_sample; + *samplesC++ = current_sample; + } + } + } + if (!count) { + count = count1; + } else if (count != count1) { + av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n"); + count = FFMAX(count, count1); + } + + if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) { + c->status[channel].predictor = current_sample; + c->status[channel].prev_sample = previous_sample; + } + } + + frame->nb_samples = count * 28; + bytestream2_seek(&gb, 0, SEEK_END); + break; + } + case AV_CODEC_ID_ADPCM_EA_XAS: + for (channel=0; channel<avctx->channels; channel++) { + int coeff[2][4], shift[4]; + int16_t *s = samples_p[channel]; + for (n = 0; n < 4; n++, s += 32) { + int val = sign_extend(bytestream2_get_le16u(&gb), 16); + for (i=0; i<2; i++) + coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i]; + s[0] = val & ~0x0F; + + val = sign_extend(bytestream2_get_le16u(&gb), 16); + shift[n] = 20 - (val & 0x0F); + s[1] = val & ~0x0F; + } + + for (m=2; m<32; m+=2) { + s = &samples_p[channel][m]; + for (n = 0; n < 4; n++, s += 32) { + int level, pred; + int byte = bytestream2_get_byteu(&gb); + + level = sign_extend(byte >> 4, 4) << shift[n]; + pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n]; + s[0] = av_clip_int16((level + pred + 0x80) >> 8); + + level = sign_extend(byte, 4) << shift[n]; + pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n]; + s[1] = av_clip_int16((level + pred + 0x80) >> 8); + } + } + } + break; + case AV_CODEC_ID_ADPCM_IMA_AMV: + c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); + c->status[0].step_index = bytestream2_get_le16u(&gb); + bytestream2_skipu(&gb, 4); + if (c->status[0].step_index > 88u) { + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", + c->status[0].step_index); + return AVERROR_INVALIDDATA; + } + + for (n = nb_samples >> (1 - st); n > 0; n--) { + int v = bytestream2_get_byteu(&gb); + + *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3); + *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3); + } + break; + case AV_CODEC_ID_ADPCM_IMA_SMJPEG: + for (i = 0; i < avctx->channels; i++) { + c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16); + c->status[i].step_index = bytestream2_get_byteu(&gb); + bytestream2_skipu(&gb, 1); + if (c->status[i].step_index > 88u) { + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", + c->status[i].step_index); + return AVERROR_INVALIDDATA; + } + } + + for (n = nb_samples >> (1 - st); n > 0; n--) { + int v = bytestream2_get_byteu(&gb); + + *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3); + *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3); + } + break; + case AV_CODEC_ID_ADPCM_CT: + for (n = nb_samples >> (1 - st); n > 0; n--) { + int v = bytestream2_get_byteu(&gb); + *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 ); + *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F); + } + break; + case AV_CODEC_ID_ADPCM_SBPRO_4: + case AV_CODEC_ID_ADPCM_SBPRO_3: + case AV_CODEC_ID_ADPCM_SBPRO_2: + if (!c->status[0].step_index) { + /* the first byte is a raw sample */ + *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80); + if (st) + *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80); + c->status[0].step_index = 1; + nb_samples--; + } + if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) { + for (n = nb_samples >> (1 - st); n > 0; n--) { + int byte = bytestream2_get_byteu(&gb); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + byte >> 4, 4, 0); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], + byte & 0x0F, 4, 0); + } + } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) { + for (n = nb_samples / 3; n > 0; n--) { + int byte = bytestream2_get_byteu(&gb); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + byte >> 5 , 3, 0); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + (byte >> 2) & 0x07, 3, 0); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + byte & 0x03, 2, 0); + } + } else { + for (n = nb_samples >> (2 - st); n > 0; n--) { + int byte = bytestream2_get_byteu(&gb); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + byte >> 6 , 2, 2); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], + (byte >> 4) & 0x03, 2, 2); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + (byte >> 2) & 0x03, 2, 2); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], + byte & 0x03, 2, 2); + } + } + break; + case AV_CODEC_ID_ADPCM_SWF: + adpcm_swf_decode(avctx, buf, buf_size, samples); + bytestream2_seek(&gb, 0, SEEK_END); + break; + case AV_CODEC_ID_ADPCM_YAMAHA: + for (n = nb_samples >> (1 - st); n > 0; n--) { + int v = bytestream2_get_byteu(&gb); + *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F); + *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 ); + } + break; + case AV_CODEC_ID_ADPCM_AFC: + { + int samples_per_block; + int blocks; + + if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) { + samples_per_block = avctx->extradata[0] / 16; + blocks = nb_samples / avctx->extradata[0]; + } else { + samples_per_block = nb_samples / 16; + blocks = 1; + } + + for (m = 0; m < blocks; m++) { + for (channel = 0; channel < avctx->channels; channel++) { + int prev1 = c->status[channel].sample1; + int prev2 = c->status[channel].sample2; + + samples = samples_p[channel] + m * 16; + /* Read in every sample for this channel. */ + for (i = 0; i < samples_per_block; i++) { + int byte = bytestream2_get_byteu(&gb); + int scale = 1 << (byte >> 4); + int index = byte & 0xf; + int factor1 = ff_adpcm_afc_coeffs[0][index]; + int factor2 = ff_adpcm_afc_coeffs[1][index]; + + /* Decode 16 samples. */ + for (n = 0; n < 16; n++) { + int32_t sampledat; + + if (n & 1) { + sampledat = sign_extend(byte, 4); + } else { + byte = bytestream2_get_byteu(&gb); + sampledat = sign_extend(byte >> 4, 4); + } + + sampledat = ((prev1 * factor1 + prev2 * factor2) + + ((sampledat * scale) << 11)) >> 11; + *samples = av_clip_int16(sampledat); + prev2 = prev1; + prev1 = *samples++; + } + } + + c->status[channel].sample1 = prev1; + c->status[channel].sample2 = prev2; + } + } + bytestream2_seek(&gb, 0, SEEK_END); + break; + } + case AV_CODEC_ID_ADPCM_THP: + { + int table[6][16]; + int ch; + + for (i = 0; i < avctx->channels; i++) + for (n = 0; n < 16; n++) + table[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16); + + /* Initialize the previous sample. */ + for (i = 0; i < avctx->channels; i++) { + c->status[i].sample1 = sign_extend(bytestream2_get_be16u(&gb), 16); + c->status[i].sample2 = sign_extend(bytestream2_get_be16u(&gb), 16); + } + + for (ch = 0; ch < avctx->channels; ch++) { + samples = samples_p[ch]; + + /* Read in every sample for this channel. */ + for (i = 0; i < nb_samples / 14; i++) { + int byte = bytestream2_get_byteu(&gb); + int index = (byte >> 4) & 7; + unsigned int exp = byte & 0x0F; + int factor1 = table[ch][index * 2]; + int factor2 = table[ch][index * 2 + 1]; + + /* Decode 14 samples. */ + for (n = 0; n < 14; n++) { + int32_t sampledat; + + if (n & 1) { + sampledat = sign_extend(byte, 4); + } else { + byte = bytestream2_get_byteu(&gb); + sampledat = sign_extend(byte >> 4, 4); + } + + sampledat = ((c->status[ch].sample1 * factor1 + + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp); + *samples = av_clip_int16(sampledat); + c->status[ch].sample2 = c->status[ch].sample1; + c->status[ch].sample1 = *samples++; + } + } + } + break; + } + + default: + return -1; + } + + if (avpkt->size && bytestream2_tell(&gb) == 0) { + av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n"); + return AVERROR_INVALIDDATA; + } + + *got_frame_ptr = 1; + + return bytestream2_tell(&gb); +} + + +static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16, + AV_SAMPLE_FMT_NONE }; +static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16, + AV_SAMPLE_FMT_NONE }; +static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16, + AV_SAMPLE_FMT_S16P, + AV_SAMPLE_FMT_NONE }; + +#define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \ +AVCodec ff_ ## name_ ## _decoder = { \ + .name = #name_, \ + .type = AVMEDIA_TYPE_AUDIO, \ + .id = id_, \ + .priv_data_size = sizeof(ADPCMDecodeContext), \ + .init = adpcm_decode_init, \ + .decode = adpcm_decode_frame, \ + .capabilities = CODEC_CAP_DR1, \ + .long_name = NULL_IF_CONFIG_SMALL(long_name_), \ + .sample_fmts = sample_fmts_, \ +} + +/* Note: Do not forget to add new entries to the Makefile as well. */ +ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo Gamecube THP"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA"); +ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha"); |
