summaryrefslogtreecommitdiff
path: root/ffmpeg1/libavcodec/vp3.c
diff options
context:
space:
mode:
authorTim Redfern <tim@eclectronics.org>2013-08-26 15:10:18 +0100
committerTim Redfern <tim@eclectronics.org>2013-08-26 15:10:18 +0100
commit150c9823e71a161e97003849cf8b2f55b21520bd (patch)
tree3559c840cf403d1386708b2591d58f928c7b160d /ffmpeg1/libavcodec/vp3.c
parentb4b1e2630c95d5e6014463f7608d59dc2322a3b8 (diff)
adding ffmpeg specific version
Diffstat (limited to 'ffmpeg1/libavcodec/vp3.c')
-rw-r--r--ffmpeg1/libavcodec/vp3.c2486
1 files changed, 2486 insertions, 0 deletions
diff --git a/ffmpeg1/libavcodec/vp3.c b/ffmpeg1/libavcodec/vp3.c
new file mode 100644
index 0000000..1e76786
--- /dev/null
+++ b/ffmpeg1/libavcodec/vp3.c
@@ -0,0 +1,2486 @@
+/*
+ * Copyright (C) 2003-2004 the ffmpeg project
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * On2 VP3 Video Decoder
+ *
+ * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
+ * For more information about the VP3 coding process, visit:
+ * http://wiki.multimedia.cx/index.php?title=On2_VP3
+ *
+ * Theora decoder by Alex Beregszaszi
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "libavutil/imgutils.h"
+#include "avcodec.h"
+#include "internal.h"
+#include "dsputil.h"
+#include "get_bits.h"
+#include "hpeldsp.h"
+#include "videodsp.h"
+#include "vp3data.h"
+#include "vp3dsp.h"
+#include "xiph.h"
+#include "thread.h"
+
+#define FRAGMENT_PIXELS 8
+
+//FIXME split things out into their own arrays
+typedef struct Vp3Fragment {
+ int16_t dc;
+ uint8_t coding_method;
+ uint8_t qpi;
+} Vp3Fragment;
+
+#define SB_NOT_CODED 0
+#define SB_PARTIALLY_CODED 1
+#define SB_FULLY_CODED 2
+
+// This is the maximum length of a single long bit run that can be encoded
+// for superblock coding or block qps. Theora special-cases this to read a
+// bit instead of flipping the current bit to allow for runs longer than 4129.
+#define MAXIMUM_LONG_BIT_RUN 4129
+
+#define MODE_INTER_NO_MV 0
+#define MODE_INTRA 1
+#define MODE_INTER_PLUS_MV 2
+#define MODE_INTER_LAST_MV 3
+#define MODE_INTER_PRIOR_LAST 4
+#define MODE_USING_GOLDEN 5
+#define MODE_GOLDEN_MV 6
+#define MODE_INTER_FOURMV 7
+#define CODING_MODE_COUNT 8
+
+/* special internal mode */
+#define MODE_COPY 8
+
+static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
+static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
+
+
+/* There are 6 preset schemes, plus a free-form scheme */
+static const int ModeAlphabet[6][CODING_MODE_COUNT] =
+{
+ /* scheme 1: Last motion vector dominates */
+ { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
+ MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
+ MODE_INTRA, MODE_USING_GOLDEN,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+ /* scheme 2 */
+ { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
+ MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
+ MODE_INTRA, MODE_USING_GOLDEN,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+ /* scheme 3 */
+ { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
+ MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
+ MODE_INTRA, MODE_USING_GOLDEN,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+ /* scheme 4 */
+ { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
+ MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
+ MODE_INTRA, MODE_USING_GOLDEN,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+ /* scheme 5: No motion vector dominates */
+ { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
+ MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
+ MODE_INTRA, MODE_USING_GOLDEN,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+ /* scheme 6 */
+ { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
+ MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
+ MODE_INTER_PLUS_MV, MODE_INTRA,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+};
+
+static const uint8_t hilbert_offset[16][2] = {
+ {0,0}, {1,0}, {1,1}, {0,1},
+ {0,2}, {0,3}, {1,3}, {1,2},
+ {2,2}, {2,3}, {3,3}, {3,2},
+ {3,1}, {2,1}, {2,0}, {3,0}
+};
+
+#define MIN_DEQUANT_VAL 2
+
+typedef struct Vp3DecodeContext {
+ AVCodecContext *avctx;
+ int theora, theora_tables;
+ int version;
+ int width, height;
+ int chroma_x_shift, chroma_y_shift;
+ ThreadFrame golden_frame;
+ ThreadFrame last_frame;
+ ThreadFrame current_frame;
+ int keyframe;
+ uint8_t idct_permutation[64];
+ uint8_t idct_scantable[64];
+ HpelDSPContext hdsp;
+ VideoDSPContext vdsp;
+ VP3DSPContext vp3dsp;
+ DECLARE_ALIGNED(16, int16_t, block)[64];
+ int flipped_image;
+ int last_slice_end;
+ int skip_loop_filter;
+
+ int qps[3];
+ int nqps;
+ int last_qps[3];
+
+ int superblock_count;
+ int y_superblock_width;
+ int y_superblock_height;
+ int y_superblock_count;
+ int c_superblock_width;
+ int c_superblock_height;
+ int c_superblock_count;
+ int u_superblock_start;
+ int v_superblock_start;
+ unsigned char *superblock_coding;
+
+ int macroblock_count;
+ int macroblock_width;
+ int macroblock_height;
+
+ int fragment_count;
+ int fragment_width[2];
+ int fragment_height[2];
+
+ Vp3Fragment *all_fragments;
+ int fragment_start[3];
+ int data_offset[3];
+
+ int8_t (*motion_val[2])[2];
+
+ /* tables */
+ uint16_t coded_dc_scale_factor[64];
+ uint32_t coded_ac_scale_factor[64];
+ uint8_t base_matrix[384][64];
+ uint8_t qr_count[2][3];
+ uint8_t qr_size [2][3][64];
+ uint16_t qr_base[2][3][64];
+
+ /**
+ * This is a list of all tokens in bitstream order. Reordering takes place
+ * by pulling from each level during IDCT. As a consequence, IDCT must be
+ * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
+ * otherwise. The 32 different tokens with up to 12 bits of extradata are
+ * collapsed into 3 types, packed as follows:
+ * (from the low to high bits)
+ *
+ * 2 bits: type (0,1,2)
+ * 0: EOB run, 14 bits for run length (12 needed)
+ * 1: zero run, 7 bits for run length
+ * 7 bits for the next coefficient (3 needed)
+ * 2: coefficient, 14 bits (11 needed)
+ *
+ * Coefficients are signed, so are packed in the highest bits for automatic
+ * sign extension.
+ */
+ int16_t *dct_tokens[3][64];
+ int16_t *dct_tokens_base;
+#define TOKEN_EOB(eob_run) ((eob_run) << 2)
+#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
+#define TOKEN_COEFF(coeff) (((coeff) << 2) + 2)
+
+ /**
+ * number of blocks that contain DCT coefficients at the given level or higher
+ */
+ int num_coded_frags[3][64];
+ int total_num_coded_frags;
+
+ /* this is a list of indexes into the all_fragments array indicating
+ * which of the fragments are coded */
+ int *coded_fragment_list[3];
+
+ VLC dc_vlc[16];
+ VLC ac_vlc_1[16];
+ VLC ac_vlc_2[16];
+ VLC ac_vlc_3[16];
+ VLC ac_vlc_4[16];
+
+ VLC superblock_run_length_vlc;
+ VLC fragment_run_length_vlc;
+ VLC mode_code_vlc;
+ VLC motion_vector_vlc;
+
+ /* these arrays need to be on 16-byte boundaries since SSE2 operations
+ * index into them */
+ DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
+
+ /* This table contains superblock_count * 16 entries. Each set of 16
+ * numbers corresponds to the fragment indexes 0..15 of the superblock.
+ * An entry will be -1 to indicate that no entry corresponds to that
+ * index. */
+ int *superblock_fragments;
+
+ /* This is an array that indicates how a particular macroblock
+ * is coded. */
+ unsigned char *macroblock_coding;
+
+ uint8_t *edge_emu_buffer;
+
+ /* Huffman decode */
+ int hti;
+ unsigned int hbits;
+ int entries;
+ int huff_code_size;
+ uint32_t huffman_table[80][32][2];
+
+ uint8_t filter_limit_values[64];
+ DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
+} Vp3DecodeContext;
+
+/************************************************************************
+ * VP3 specific functions
+ ************************************************************************/
+
+static void vp3_decode_flush(AVCodecContext *avctx)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+
+ if (s->golden_frame.f)
+ ff_thread_release_buffer(avctx, &s->golden_frame);
+ if (s->last_frame.f)
+ ff_thread_release_buffer(avctx, &s->last_frame);
+ if (s->current_frame.f)
+ ff_thread_release_buffer(avctx, &s->current_frame);
+}
+
+static av_cold int vp3_decode_end(AVCodecContext *avctx)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+ int i;
+
+ av_freep(&s->superblock_coding);
+ av_freep(&s->all_fragments);
+ av_freep(&s->coded_fragment_list[0]);
+ av_freep(&s->dct_tokens_base);
+ av_freep(&s->superblock_fragments);
+ av_freep(&s->macroblock_coding);
+ av_freep(&s->motion_val[0]);
+ av_freep(&s->motion_val[1]);
+ av_freep(&s->edge_emu_buffer);
+
+ s->theora_tables = 0;
+
+ /* release all frames */
+ vp3_decode_flush(avctx);
+ av_frame_free(&s->current_frame.f);
+ av_frame_free(&s->last_frame.f);
+ av_frame_free(&s->golden_frame.f);
+
+ if (avctx->internal->is_copy)
+ return 0;
+
+ for (i = 0; i < 16; i++) {
+ ff_free_vlc(&s->dc_vlc[i]);
+ ff_free_vlc(&s->ac_vlc_1[i]);
+ ff_free_vlc(&s->ac_vlc_2[i]);
+ ff_free_vlc(&s->ac_vlc_3[i]);
+ ff_free_vlc(&s->ac_vlc_4[i]);
+ }
+
+ ff_free_vlc(&s->superblock_run_length_vlc);
+ ff_free_vlc(&s->fragment_run_length_vlc);
+ ff_free_vlc(&s->mode_code_vlc);
+ ff_free_vlc(&s->motion_vector_vlc);
+
+
+ return 0;
+}
+
+/**
+ * This function sets up all of the various blocks mappings:
+ * superblocks <-> fragments, macroblocks <-> fragments,
+ * superblocks <-> macroblocks
+ *
+ * @return 0 is successful; returns 1 if *anything* went wrong.
+ */
+static int init_block_mapping(Vp3DecodeContext *s)
+{
+ int sb_x, sb_y, plane;
+ int x, y, i, j = 0;
+
+ for (plane = 0; plane < 3; plane++) {
+ int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
+ int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
+ int frag_width = s->fragment_width[!!plane];
+ int frag_height = s->fragment_height[!!plane];
+
+ for (sb_y = 0; sb_y < sb_height; sb_y++)
+ for (sb_x = 0; sb_x < sb_width; sb_x++)
+ for (i = 0; i < 16; i++) {
+ x = 4*sb_x + hilbert_offset[i][0];
+ y = 4*sb_y + hilbert_offset[i][1];
+
+ if (x < frag_width && y < frag_height)
+ s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
+ else
+ s->superblock_fragments[j++] = -1;
+ }
+ }
+
+ return 0; /* successful path out */
+}
+
+/*
+ * This function sets up the dequantization tables used for a particular
+ * frame.
+ */
+static void init_dequantizer(Vp3DecodeContext *s, int qpi)
+{
+ int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
+ int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
+ int i, plane, inter, qri, bmi, bmj, qistart;
+
+ for(inter=0; inter<2; inter++){
+ for(plane=0; plane<3; plane++){
+ int sum=0;
+ for(qri=0; qri<s->qr_count[inter][plane]; qri++){
+ sum+= s->qr_size[inter][plane][qri];
+ if(s->qps[qpi] <= sum)
+ break;
+ }
+ qistart= sum - s->qr_size[inter][plane][qri];
+ bmi= s->qr_base[inter][plane][qri ];
+ bmj= s->qr_base[inter][plane][qri+1];
+ for(i=0; i<64; i++){
+ int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
+ - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
+ + s->qr_size[inter][plane][qri])
+ / (2*s->qr_size[inter][plane][qri]);
+
+ int qmin= 8<<(inter + !i);
+ int qscale= i ? ac_scale_factor : dc_scale_factor;
+
+ s->qmat[qpi][inter][plane][s->idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
+ }
+ // all DC coefficients use the same quant so as not to interfere with DC prediction
+ s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
+ }
+ }
+}
+
+/*
+ * This function initializes the loop filter boundary limits if the frame's
+ * quality index is different from the previous frame's.
+ *
+ * The filter_limit_values may not be larger than 127.
+ */
+static void init_loop_filter(Vp3DecodeContext *s)
+{
+ int *bounding_values= s->bounding_values_array+127;
+ int filter_limit;
+ int x;
+ int value;
+
+ filter_limit = s->filter_limit_values[s->qps[0]];
+ av_assert0(filter_limit < 128U);
+
+ /* set up the bounding values */
+ memset(s->bounding_values_array, 0, 256 * sizeof(int));
+ for (x = 0; x < filter_limit; x++) {
+ bounding_values[-x] = -x;
+ bounding_values[x] = x;
+ }
+ for (x = value = filter_limit; x < 128 && value; x++, value--) {
+ bounding_values[ x] = value;
+ bounding_values[-x] = -value;
+ }
+ if (value)
+ bounding_values[128] = value;
+ bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
+}
+
+/*
+ * This function unpacks all of the superblock/macroblock/fragment coding
+ * information from the bitstream.
+ */
+static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
+{
+ int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
+ int bit = 0;
+ int current_superblock = 0;
+ int current_run = 0;
+ int num_partial_superblocks = 0;
+
+ int i, j;
+ int current_fragment;
+ int plane;
+
+ if (s->keyframe) {
+ memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
+
+ } else {
+
+ /* unpack the list of partially-coded superblocks */
+ bit = get_bits1(gb) ^ 1;
+ current_run = 0;
+
+ while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
+ if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
+ bit = get_bits1(gb);
+ else
+ bit ^= 1;
+
+ current_run = get_vlc2(gb,
+ s->superblock_run_length_vlc.table, 6, 2) + 1;
+ if (current_run == 34)
+ current_run += get_bits(gb, 12);
+
+ if (current_superblock + current_run > s->superblock_count) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
+ return -1;
+ }
+
+ memset(s->superblock_coding + current_superblock, bit, current_run);
+
+ current_superblock += current_run;
+ if (bit)
+ num_partial_superblocks += current_run;
+ }
+
+ /* unpack the list of fully coded superblocks if any of the blocks were
+ * not marked as partially coded in the previous step */
+ if (num_partial_superblocks < s->superblock_count) {
+ int superblocks_decoded = 0;
+
+ current_superblock = 0;
+ bit = get_bits1(gb) ^ 1;
+ current_run = 0;
+
+ while (superblocks_decoded < s->superblock_count - num_partial_superblocks
+ && get_bits_left(gb) > 0) {
+
+ if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
+ bit = get_bits1(gb);
+ else
+ bit ^= 1;
+
+ current_run = get_vlc2(gb,
+ s->superblock_run_length_vlc.table, 6, 2) + 1;
+ if (current_run == 34)
+ current_run += get_bits(gb, 12);
+
+ for (j = 0; j < current_run; current_superblock++) {
+ if (current_superblock >= s->superblock_count) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
+ return -1;
+ }
+
+ /* skip any superblocks already marked as partially coded */
+ if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
+ s->superblock_coding[current_superblock] = 2*bit;
+ j++;
+ }
+ }
+ superblocks_decoded += current_run;
+ }
+ }
+
+ /* if there were partial blocks, initialize bitstream for
+ * unpacking fragment codings */
+ if (num_partial_superblocks) {
+
+ current_run = 0;
+ bit = get_bits1(gb);
+ /* toggle the bit because as soon as the first run length is
+ * fetched the bit will be toggled again */
+ bit ^= 1;
+ }
+ }
+
+ /* figure out which fragments are coded; iterate through each
+ * superblock (all planes) */
+ s->total_num_coded_frags = 0;
+ memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
+
+ for (plane = 0; plane < 3; plane++) {
+ int sb_start = superblock_starts[plane];
+ int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
+ int num_coded_frags = 0;
+
+ for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
+
+ /* iterate through all 16 fragments in a superblock */
+ for (j = 0; j < 16; j++) {
+
+ /* if the fragment is in bounds, check its coding status */
+ current_fragment = s->superblock_fragments[i * 16 + j];
+ if (current_fragment != -1) {
+ int coded = s->superblock_coding[i];
+
+ if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
+
+ /* fragment may or may not be coded; this is the case
+ * that cares about the fragment coding runs */
+ if (current_run-- == 0) {
+ bit ^= 1;
+ current_run = get_vlc2(gb,
+ s->fragment_run_length_vlc.table, 5, 2);
+ }
+ coded = bit;
+ }
+
+ if (coded) {
+ /* default mode; actual mode will be decoded in
+ * the next phase */
+ s->all_fragments[current_fragment].coding_method =
+ MODE_INTER_NO_MV;
+ s->coded_fragment_list[plane][num_coded_frags++] =
+ current_fragment;
+ } else {
+ /* not coded; copy this fragment from the prior frame */
+ s->all_fragments[current_fragment].coding_method =
+ MODE_COPY;
+ }
+ }
+ }
+ }
+ s->total_num_coded_frags += num_coded_frags;
+ for (i = 0; i < 64; i++)
+ s->num_coded_frags[plane][i] = num_coded_frags;
+ if (plane < 2)
+ s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
+ }
+ return 0;
+}
+
+/*
+ * This function unpacks all the coding mode data for individual macroblocks
+ * from the bitstream.
+ */
+static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
+{
+ int i, j, k, sb_x, sb_y;
+ int scheme;
+ int current_macroblock;
+ int current_fragment;
+ int coding_mode;
+ int custom_mode_alphabet[CODING_MODE_COUNT];
+ const int *alphabet;
+ Vp3Fragment *frag;
+
+ if (s->keyframe) {
+ for (i = 0; i < s->fragment_count; i++)
+ s->all_fragments[i].coding_method = MODE_INTRA;
+
+ } else {
+
+ /* fetch the mode coding scheme for this frame */
+ scheme = get_bits(gb, 3);
+
+ /* is it a custom coding scheme? */
+ if (scheme == 0) {
+ for (i = 0; i < 8; i++)
+ custom_mode_alphabet[i] = MODE_INTER_NO_MV;
+ for (i = 0; i < 8; i++)
+ custom_mode_alphabet[get_bits(gb, 3)] = i;
+ alphabet = custom_mode_alphabet;
+ } else
+ alphabet = ModeAlphabet[scheme-1];
+
+ /* iterate through all of the macroblocks that contain 1 or more
+ * coded fragments */
+ for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
+ for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
+ if (get_bits_left(gb) <= 0)
+ return -1;
+
+ for (j = 0; j < 4; j++) {
+ int mb_x = 2*sb_x + (j>>1);
+ int mb_y = 2*sb_y + (((j>>1)+j)&1);
+ current_macroblock = mb_y * s->macroblock_width + mb_x;
+
+ if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
+ continue;
+
+#define BLOCK_X (2*mb_x + (k&1))
+#define BLOCK_Y (2*mb_y + (k>>1))
+ /* coding modes are only stored if the macroblock has at least one
+ * luma block coded, otherwise it must be INTER_NO_MV */
+ for (k = 0; k < 4; k++) {
+ current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
+ if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
+ break;
+ }
+ if (k == 4) {
+ s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
+ continue;
+ }
+
+ /* mode 7 means get 3 bits for each coding mode */
+ if (scheme == 7)
+ coding_mode = get_bits(gb, 3);
+ else
+ coding_mode = alphabet
+ [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
+
+ s->macroblock_coding[current_macroblock] = coding_mode;
+ for (k = 0; k < 4; k++) {
+ frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
+ if (frag->coding_method != MODE_COPY)
+ frag->coding_method = coding_mode;
+ }
+
+#define SET_CHROMA_MODES \
+ if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
+ frag[s->fragment_start[1]].coding_method = coding_mode;\
+ if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
+ frag[s->fragment_start[2]].coding_method = coding_mode;
+
+ if (s->chroma_y_shift) {
+ frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
+ SET_CHROMA_MODES
+ } else if (s->chroma_x_shift) {
+ frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
+ for (k = 0; k < 2; k++) {
+ SET_CHROMA_MODES
+ frag += s->fragment_width[1];
+ }
+ } else {
+ for (k = 0; k < 4; k++) {
+ frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
+ SET_CHROMA_MODES
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * This function unpacks all the motion vectors for the individual
+ * macroblocks from the bitstream.
+ */
+static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
+{
+ int j, k, sb_x, sb_y;
+ int coding_mode;
+ int motion_x[4];
+ int motion_y[4];
+ int last_motion_x = 0;
+ int last_motion_y = 0;
+ int prior_last_motion_x = 0;
+ int prior_last_motion_y = 0;
+ int current_macroblock;
+ int current_fragment;
+ int frag;
+
+ if (s->keyframe)
+ return 0;
+
+ /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
+ coding_mode = get_bits1(gb);
+
+ /* iterate through all of the macroblocks that contain 1 or more
+ * coded fragments */
+ for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
+ for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
+ if (get_bits_left(gb) <= 0)
+ return -1;
+
+ for (j = 0; j < 4; j++) {
+ int mb_x = 2*sb_x + (j>>1);
+ int mb_y = 2*sb_y + (((j>>1)+j)&1);
+ current_macroblock = mb_y * s->macroblock_width + mb_x;
+
+ if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
+ (s->macroblock_coding[current_macroblock] == MODE_COPY))
+ continue;
+
+ switch (s->macroblock_coding[current_macroblock]) {
+
+ case MODE_INTER_PLUS_MV:
+ case MODE_GOLDEN_MV:
+ /* all 6 fragments use the same motion vector */
+ if (coding_mode == 0) {
+ motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
+ motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
+ } else {
+ motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
+ motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
+ }
+
+ /* vector maintenance, only on MODE_INTER_PLUS_MV */
+ if (s->macroblock_coding[current_macroblock] ==
+ MODE_INTER_PLUS_MV) {
+ prior_last_motion_x = last_motion_x;
+ prior_last_motion_y = last_motion_y;
+ last_motion_x = motion_x[0];
+ last_motion_y = motion_y[0];
+ }
+ break;
+
+ case MODE_INTER_FOURMV:
+ /* vector maintenance */
+ prior_last_motion_x = last_motion_x;
+ prior_last_motion_y = last_motion_y;
+
+ /* fetch 4 vectors from the bitstream, one for each
+ * Y fragment, then average for the C fragment vectors */
+ for (k = 0; k < 4; k++) {
+ current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
+ if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
+ if (coding_mode == 0) {
+ motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
+ motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
+ } else {
+ motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
+ motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
+ }
+ last_motion_x = motion_x[k];
+ last_motion_y = motion_y[k];
+ } else {
+ motion_x[k] = 0;
+ motion_y[k] = 0;
+ }
+ }
+ break;
+
+ case MODE_INTER_LAST_MV:
+ /* all 6 fragments use the last motion vector */
+ motion_x[0] = last_motion_x;
+ motion_y[0] = last_motion_y;
+
+ /* no vector maintenance (last vector remains the
+ * last vector) */
+ break;
+
+ case MODE_INTER_PRIOR_LAST:
+ /* all 6 fragments use the motion vector prior to the
+ * last motion vector */
+ motion_x[0] = prior_last_motion_x;
+ motion_y[0] = prior_last_motion_y;
+
+ /* vector maintenance */
+ prior_last_motion_x = last_motion_x;
+ prior_last_motion_y = last_motion_y;
+ last_motion_x = motion_x[0];
+ last_motion_y = motion_y[0];
+ break;
+
+ default:
+ /* covers intra, inter without MV, golden without MV */
+ motion_x[0] = 0;
+ motion_y[0] = 0;
+
+ /* no vector maintenance */
+ break;
+ }
+
+ /* assign the motion vectors to the correct fragments */
+ for (k = 0; k < 4; k++) {
+ current_fragment =
+ BLOCK_Y*s->fragment_width[0] + BLOCK_X;
+ if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
+ s->motion_val[0][current_fragment][0] = motion_x[k];
+ s->motion_val[0][current_fragment][1] = motion_y[k];
+ } else {
+ s->motion_val[0][current_fragment][0] = motion_x[0];
+ s->motion_val[0][current_fragment][1] = motion_y[0];
+ }
+ }
+
+ if (s->chroma_y_shift) {
+ if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
+ motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
+ motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
+ }
+ motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
+ motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
+ frag = mb_y*s->fragment_width[1] + mb_x;
+ s->motion_val[1][frag][0] = motion_x[0];
+ s->motion_val[1][frag][1] = motion_y[0];
+ } else if (s->chroma_x_shift) {
+ if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
+ motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
+ motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
+ motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
+ motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
+ } else {
+ motion_x[1] = motion_x[0];
+ motion_y[1] = motion_y[0];
+ }
+ motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
+ motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
+
+ frag = 2*mb_y*s->fragment_width[1] + mb_x;
+ for (k = 0; k < 2; k++) {
+ s->motion_val[1][frag][0] = motion_x[k];
+ s->motion_val[1][frag][1] = motion_y[k];
+ frag += s->fragment_width[1];
+ }
+ } else {
+ for (k = 0; k < 4; k++) {
+ frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
+ if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
+ s->motion_val[1][frag][0] = motion_x[k];
+ s->motion_val[1][frag][1] = motion_y[k];
+ } else {
+ s->motion_val[1][frag][0] = motion_x[0];
+ s->motion_val[1][frag][1] = motion_y[0];
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
+{
+ int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
+ int num_blocks = s->total_num_coded_frags;
+
+ for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
+ i = blocks_decoded = num_blocks_at_qpi = 0;
+
+ bit = get_bits1(gb) ^ 1;
+ run_length = 0;
+
+ do {
+ if (run_length == MAXIMUM_LONG_BIT_RUN)
+ bit = get_bits1(gb);
+ else
+ bit ^= 1;
+
+ run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
+ if (run_length == 34)
+ run_length += get_bits(gb, 12);
+ blocks_decoded += run_length;
+
+ if (!bit)
+ num_blocks_at_qpi += run_length;
+
+ for (j = 0; j < run_length; i++) {
+ if (i >= s->total_num_coded_frags)
+ return -1;
+
+ if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
+ s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
+ j++;
+ }
+ }
+ } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
+
+ num_blocks -= num_blocks_at_qpi;
+ }
+
+ return 0;
+}
+
+/*
+ * This function is called by unpack_dct_coeffs() to extract the VLCs from
+ * the bitstream. The VLCs encode tokens which are used to unpack DCT
+ * data. This function unpacks all the VLCs for either the Y plane or both
+ * C planes, and is called for DC coefficients or different AC coefficient
+ * levels (since different coefficient types require different VLC tables.
+ *
+ * This function returns a residual eob run. E.g, if a particular token gave
+ * instructions to EOB the next 5 fragments and there were only 2 fragments
+ * left in the current fragment range, 3 would be returned so that it could
+ * be passed into the next call to this same function.
+ */
+static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
+ VLC *table, int coeff_index,
+ int plane,
+ int eob_run)
+{
+ int i, j = 0;
+ int token;
+ int zero_run = 0;
+ int16_t coeff = 0;
+ int bits_to_get;
+ int blocks_ended;
+ int coeff_i = 0;
+ int num_coeffs = s->num_coded_frags[plane][coeff_index];
+ int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
+
+ /* local references to structure members to avoid repeated deferences */
+ int *coded_fragment_list = s->coded_fragment_list[plane];
+ Vp3Fragment *all_fragments = s->all_fragments;
+ VLC_TYPE (*vlc_table)[2] = table->table;
+
+ if (num_coeffs < 0)
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
+
+ if (eob_run > num_coeffs) {
+ coeff_i = blocks_ended = num_coeffs;
+ eob_run -= num_coeffs;
+ } else {
+ coeff_i = blocks_ended = eob_run;
+ eob_run = 0;
+ }
+
+ // insert fake EOB token to cover the split between planes or zzi
+ if (blocks_ended)
+ dct_tokens[j++] = blocks_ended << 2;
+
+ while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
+ /* decode a VLC into a token */
+ token = get_vlc2(gb, vlc_table, 11, 3);
+ /* use the token to get a zero run, a coefficient, and an eob run */
+ if ((unsigned) token <= 6U) {
+ eob_run = eob_run_base[token];
+ if (eob_run_get_bits[token])
+ eob_run += get_bits(gb, eob_run_get_bits[token]);
+
+ // record only the number of blocks ended in this plane,
+ // any spill will be recorded in the next plane.
+ if (eob_run > num_coeffs - coeff_i) {
+ dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
+ blocks_ended += num_coeffs - coeff_i;
+ eob_run -= num_coeffs - coeff_i;
+ coeff_i = num_coeffs;
+ } else {
+ dct_tokens[j++] = TOKEN_EOB(eob_run);
+ blocks_ended += eob_run;
+ coeff_i += eob_run;
+ eob_run = 0;
+ }
+ } else if (token >= 0) {
+ bits_to_get = coeff_get_bits[token];
+ if (bits_to_get)
+ bits_to_get = get_bits(gb, bits_to_get);
+ coeff = coeff_tables[token][bits_to_get];
+
+ zero_run = zero_run_base[token];
+ if (zero_run_get_bits[token])
+ zero_run += get_bits(gb, zero_run_get_bits[token]);
+
+ if (zero_run) {
+ dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
+ } else {
+ // Save DC into the fragment structure. DC prediction is
+ // done in raster order, so the actual DC can't be in with
+ // other tokens. We still need the token in dct_tokens[]
+ // however, or else the structure collapses on itself.
+ if (!coeff_index)
+ all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
+
+ dct_tokens[j++] = TOKEN_COEFF(coeff);
+ }
+
+ if (coeff_index + zero_run > 64) {
+ av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
+ " %d coeffs left\n", zero_run, 64-coeff_index);
+ zero_run = 64 - coeff_index;
+ }
+
+ // zero runs code multiple coefficients,
+ // so don't try to decode coeffs for those higher levels
+ for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
+ s->num_coded_frags[plane][i]--;
+ coeff_i++;
+ } else {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "Invalid token %d\n", token);
+ return -1;
+ }
+ }
+
+ if (blocks_ended > s->num_coded_frags[plane][coeff_index])
+ av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
+
+ // decrement the number of blocks that have higher coeffecients for each
+ // EOB run at this level
+ if (blocks_ended)
+ for (i = coeff_index+1; i < 64; i++)
+ s->num_coded_frags[plane][i] -= blocks_ended;
+
+ // setup the next buffer
+ if (plane < 2)
+ s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
+ else if (coeff_index < 63)
+ s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
+
+ return eob_run;
+}
+
+static void reverse_dc_prediction(Vp3DecodeContext *s,
+ int first_fragment,
+ int fragment_width,
+ int fragment_height);
+/*
+ * This function unpacks all of the DCT coefficient data from the
+ * bitstream.
+ */
+static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
+{
+ int i;
+ int dc_y_table;
+ int dc_c_table;
+ int ac_y_table;
+ int ac_c_table;
+ int residual_eob_run = 0;
+ VLC *y_tables[64];
+ VLC *c_tables[64];
+
+ s->dct_tokens[0][0] = s->dct_tokens_base;
+
+ /* fetch the DC table indexes */
+ dc_y_table = get_bits(gb, 4);
+ dc_c_table = get_bits(gb, 4);
+
+ /* unpack the Y plane DC coefficients */
+ residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
+ 0, residual_eob_run);
+ if (residual_eob_run < 0)
+ return residual_eob_run;
+
+ /* reverse prediction of the Y-plane DC coefficients */
+ reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
+
+ /* unpack the C plane DC coefficients */
+ residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
+ 1, residual_eob_run);
+ if (residual_eob_run < 0)
+ return residual_eob_run;
+ residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
+ 2, residual_eob_run);
+ if (residual_eob_run < 0)
+ return residual_eob_run;
+
+ /* reverse prediction of the C-plane DC coefficients */
+ if (!(s->avctx->flags & CODEC_FLAG_GRAY))
+ {
+ reverse_dc_prediction(s, s->fragment_start[1],
+ s->fragment_width[1], s->fragment_height[1]);
+ reverse_dc_prediction(s, s->fragment_start[2],
+ s->fragment_width[1], s->fragment_height[1]);
+ }
+
+ /* fetch the AC table indexes */
+ ac_y_table = get_bits(gb, 4);
+ ac_c_table = get_bits(gb, 4);
+
+ /* build tables of AC VLC tables */
+ for (i = 1; i <= 5; i++) {
+ y_tables[i] = &s->ac_vlc_1[ac_y_table];
+ c_tables[i] = &s->ac_vlc_1[ac_c_table];
+ }
+ for (i = 6; i <= 14; i++) {
+ y_tables[i] = &s->ac_vlc_2[ac_y_table];
+ c_tables[i] = &s->ac_vlc_2[ac_c_table];
+ }
+ for (i = 15; i <= 27; i++) {
+ y_tables[i] = &s->ac_vlc_3[ac_y_table];
+ c_tables[i] = &s->ac_vlc_3[ac_c_table];
+ }
+ for (i = 28; i <= 63; i++) {
+ y_tables[i] = &s->ac_vlc_4[ac_y_table];
+ c_tables[i] = &s->ac_vlc_4[ac_c_table];
+ }
+
+ /* decode all AC coefficents */
+ for (i = 1; i <= 63; i++) {
+ residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
+ 0, residual_eob_run);
+ if (residual_eob_run < 0)
+ return residual_eob_run;
+
+ residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
+ 1, residual_eob_run);
+ if (residual_eob_run < 0)
+ return residual_eob_run;
+ residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
+ 2, residual_eob_run);
+ if (residual_eob_run < 0)
+ return residual_eob_run;
+ }
+
+ return 0;
+}
+
+/*
+ * This function reverses the DC prediction for each coded fragment in
+ * the frame. Much of this function is adapted directly from the original
+ * VP3 source code.
+ */
+#define COMPATIBLE_FRAME(x) \
+ (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
+#define DC_COEFF(u) s->all_fragments[u].dc
+
+static void reverse_dc_prediction(Vp3DecodeContext *s,
+ int first_fragment,
+ int fragment_width,
+ int fragment_height)
+{
+
+#define PUL 8
+#define PU 4
+#define PUR 2
+#define PL 1
+
+ int x, y;
+ int i = first_fragment;
+
+ int predicted_dc;
+
+ /* DC values for the left, up-left, up, and up-right fragments */
+ int vl, vul, vu, vur;
+
+ /* indexes for the left, up-left, up, and up-right fragments */
+ int l, ul, u, ur;
+
+ /*
+ * The 6 fields mean:
+ * 0: up-left multiplier
+ * 1: up multiplier
+ * 2: up-right multiplier
+ * 3: left multiplier
+ */
+ static const int predictor_transform[16][4] = {
+ { 0, 0, 0, 0},
+ { 0, 0, 0,128}, // PL
+ { 0, 0,128, 0}, // PUR
+ { 0, 0, 53, 75}, // PUR|PL
+ { 0,128, 0, 0}, // PU
+ { 0, 64, 0, 64}, // PU|PL
+ { 0,128, 0, 0}, // PU|PUR
+ { 0, 0, 53, 75}, // PU|PUR|PL
+ {128, 0, 0, 0}, // PUL
+ { 0, 0, 0,128}, // PUL|PL
+ { 64, 0, 64, 0}, // PUL|PUR
+ { 0, 0, 53, 75}, // PUL|PUR|PL
+ { 0,128, 0, 0}, // PUL|PU
+ {-104,116, 0,116}, // PUL|PU|PL
+ { 24, 80, 24, 0}, // PUL|PU|PUR
+ {-104,116, 0,116} // PUL|PU|PUR|PL
+ };
+
+ /* This table shows which types of blocks can use other blocks for
+ * prediction. For example, INTRA is the only mode in this table to
+ * have a frame number of 0. That means INTRA blocks can only predict
+ * from other INTRA blocks. There are 2 golden frame coding types;
+ * blocks encoding in these modes can only predict from other blocks
+ * that were encoded with these 1 of these 2 modes. */
+ static const unsigned char compatible_frame[9] = {
+ 1, /* MODE_INTER_NO_MV */
+ 0, /* MODE_INTRA */
+ 1, /* MODE_INTER_PLUS_MV */
+ 1, /* MODE_INTER_LAST_MV */
+ 1, /* MODE_INTER_PRIOR_MV */
+ 2, /* MODE_USING_GOLDEN */
+ 2, /* MODE_GOLDEN_MV */
+ 1, /* MODE_INTER_FOUR_MV */
+ 3 /* MODE_COPY */
+ };
+ int current_frame_type;
+
+ /* there is a last DC predictor for each of the 3 frame types */
+ short last_dc[3];
+
+ int transform = 0;
+
+ vul = vu = vur = vl = 0;
+ last_dc[0] = last_dc[1] = last_dc[2] = 0;
+
+ /* for each fragment row... */
+ for (y = 0; y < fragment_height; y++) {
+
+ /* for each fragment in a row... */
+ for (x = 0; x < fragment_width; x++, i++) {
+
+ /* reverse prediction if this block was coded */
+ if (s->all_fragments[i].coding_method != MODE_COPY) {
+
+ current_frame_type =
+ compatible_frame[s->all_fragments[i].coding_method];
+
+ transform= 0;
+ if(x){
+ l= i-1;
+ vl = DC_COEFF(l);
+ if(COMPATIBLE_FRAME(l))
+ transform |= PL;
+ }
+ if(y){
+ u= i-fragment_width;
+ vu = DC_COEFF(u);
+ if(COMPATIBLE_FRAME(u))
+ transform |= PU;
+ if(x){
+ ul= i-fragment_width-1;
+ vul = DC_COEFF(ul);
+ if(COMPATIBLE_FRAME(ul))
+ transform |= PUL;
+ }
+ if(x + 1 < fragment_width){
+ ur= i-fragment_width+1;
+ vur = DC_COEFF(ur);
+ if(COMPATIBLE_FRAME(ur))
+ transform |= PUR;
+ }
+ }
+
+ if (transform == 0) {
+
+ /* if there were no fragments to predict from, use last
+ * DC saved */
+ predicted_dc = last_dc[current_frame_type];
+ } else {
+
+ /* apply the appropriate predictor transform */
+ predicted_dc =
+ (predictor_transform[transform][0] * vul) +
+ (predictor_transform[transform][1] * vu) +
+ (predictor_transform[transform][2] * vur) +
+ (predictor_transform[transform][3] * vl);
+
+ predicted_dc /= 128;
+
+ /* check for outranging on the [ul u l] and
+ * [ul u ur l] predictors */
+ if ((transform == 15) || (transform == 13)) {
+ if (FFABS(predicted_dc - vu) > 128)
+ predicted_dc = vu;
+ else if (FFABS(predicted_dc - vl) > 128)
+ predicted_dc = vl;
+ else if (FFABS(predicted_dc - vul) > 128)
+ predicted_dc = vul;
+ }
+ }
+
+ /* at long last, apply the predictor */
+ DC_COEFF(i) += predicted_dc;
+ /* save the DC */
+ last_dc[current_frame_type] = DC_COEFF(i);
+ }
+ }
+ }
+}
+
+static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
+{
+ int x, y;
+ int *bounding_values= s->bounding_values_array+127;
+
+ int width = s->fragment_width[!!plane];
+ int height = s->fragment_height[!!plane];
+ int fragment = s->fragment_start [plane] + ystart * width;
+ int stride = s->current_frame.f->linesize[plane];
+ uint8_t *plane_data = s->current_frame.f->data [plane];
+ if (!s->flipped_image) stride = -stride;
+ plane_data += s->data_offset[plane] + 8*ystart*stride;
+
+ for (y = ystart; y < yend; y++) {
+
+ for (x = 0; x < width; x++) {
+ /* This code basically just deblocks on the edges of coded blocks.
+ * However, it has to be much more complicated because of the
+ * braindamaged deblock ordering used in VP3/Theora. Order matters
+ * because some pixels get filtered twice. */
+ if( s->all_fragments[fragment].coding_method != MODE_COPY )
+ {
+ /* do not perform left edge filter for left columns frags */
+ if (x > 0) {
+ s->vp3dsp.h_loop_filter(
+ plane_data + 8*x,
+ stride, bounding_values);
+ }
+
+ /* do not perform top edge filter for top row fragments */
+ if (y > 0) {
+ s->vp3dsp.v_loop_filter(
+ plane_data + 8*x,
+ stride, bounding_values);
+ }
+
+ /* do not perform right edge filter for right column
+ * fragments or if right fragment neighbor is also coded
+ * in this frame (it will be filtered in next iteration) */
+ if ((x < width - 1) &&
+ (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
+ s->vp3dsp.h_loop_filter(
+ plane_data + 8*x + 8,
+ stride, bounding_values);
+ }
+
+ /* do not perform bottom edge filter for bottom row
+ * fragments or if bottom fragment neighbor is also coded
+ * in this frame (it will be filtered in the next row) */
+ if ((y < height - 1) &&
+ (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
+ s->vp3dsp.v_loop_filter(
+ plane_data + 8*x + 8*stride,
+ stride, bounding_values);
+ }
+ }
+
+ fragment++;
+ }
+ plane_data += 8*stride;
+ }
+}
+
+/**
+ * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
+ * for the next block in coding order
+ */
+static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
+ int plane, int inter, int16_t block[64])
+{
+ int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
+ uint8_t *perm = s->idct_scantable;
+ int i = 0;
+
+ do {
+ int token = *s->dct_tokens[plane][i];
+ switch (token & 3) {
+ case 0: // EOB
+ if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
+ s->dct_tokens[plane][i]++;
+ else
+ *s->dct_tokens[plane][i] = token & ~3;
+ goto end;
+ case 1: // zero run
+ s->dct_tokens[plane][i]++;
+ i += (token >> 2) & 0x7f;
+ if (i > 63) {
+ av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
+ return i;
+ }
+ block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
+ i++;
+ break;
+ case 2: // coeff
+ block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
+ s->dct_tokens[plane][i++]++;
+ break;
+ default: // shouldn't happen
+ return i;
+ }
+ } while (i < 64);
+ // return value is expected to be a valid level
+ i--;
+end:
+ // the actual DC+prediction is in the fragment structure
+ block[0] = frag->dc * s->qmat[0][inter][plane][0];
+ return i;
+}
+
+/**
+ * called when all pixels up to row y are complete
+ */
+static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
+{
+ int h, cy, i;
+ int offset[AV_NUM_DATA_POINTERS];
+
+ if (HAVE_THREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) {
+ int y_flipped = s->flipped_image ? s->avctx->height-y : y;
+
+ // At the end of the frame, report INT_MAX instead of the height of the frame.
+ // This makes the other threads' ff_thread_await_progress() calls cheaper, because
+ // they don't have to clip their values.
+ ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0);
+ }
+
+ if(s->avctx->draw_horiz_band==NULL)
+ return;
+
+ h= y - s->last_slice_end;
+ s->last_slice_end= y;
+ y -= h;
+
+ if (!s->flipped_image) {
+ y = s->avctx->height - y - h;
+ }
+
+ cy = y >> s->chroma_y_shift;
+ offset[0] = s->current_frame.f->linesize[0]*y;
+ offset[1] = s->current_frame.f->linesize[1]*cy;
+ offset[2] = s->current_frame.f->linesize[2]*cy;
+ for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
+ offset[i] = 0;
+
+ emms_c();
+ s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
+}
+
+/**
+ * Wait for the reference frame of the current fragment.
+ * The progress value is in luma pixel rows.
+ */
+static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
+{
+ ThreadFrame *ref_frame;
+ int ref_row;
+ int border = motion_y&1;
+
+ if (fragment->coding_method == MODE_USING_GOLDEN ||
+ fragment->coding_method == MODE_GOLDEN_MV)
+ ref_frame = &s->golden_frame;
+ else
+ ref_frame = &s->last_frame;
+
+ ref_row = y + (motion_y>>1);
+ ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
+
+ ff_thread_await_progress(ref_frame, ref_row, 0);
+}
+
+/*
+ * Perform the final rendering for a particular slice of data.
+ * The slice number ranges from 0..(c_superblock_height - 1).
+ */
+static void render_slice(Vp3DecodeContext *s, int slice)
+{
+ int x, y, i, j, fragment;
+ int16_t *block = s->block;
+ int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
+ int motion_halfpel_index;
+ uint8_t *motion_source;
+ int plane, first_pixel;
+
+ if (slice >= s->c_superblock_height)
+ return;
+
+ for (plane = 0; plane < 3; plane++) {
+ uint8_t *output_plane = s->current_frame.f->data [plane] + s->data_offset[plane];
+ uint8_t * last_plane = s-> last_frame.f->data [plane] + s->data_offset[plane];
+ uint8_t *golden_plane = s-> golden_frame.f->data [plane] + s->data_offset[plane];
+ int stride = s->current_frame.f->linesize[plane];
+ int plane_width = s->width >> (plane && s->chroma_x_shift);
+ int plane_height = s->height >> (plane && s->chroma_y_shift);
+ int8_t (*motion_val)[2] = s->motion_val[!!plane];
+
+ int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
+ int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
+ int slice_width = plane ? s->c_superblock_width : s->y_superblock_width;
+
+ int fragment_width = s->fragment_width[!!plane];
+ int fragment_height = s->fragment_height[!!plane];
+ int fragment_start = s->fragment_start[plane];
+ int do_await = !plane && HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME);
+
+ if (!s->flipped_image) stride = -stride;
+ if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
+ continue;
+
+ /* for each superblock row in the slice (both of them)... */
+ for (; sb_y < slice_height; sb_y++) {
+
+ /* for each superblock in a row... */
+ for (sb_x = 0; sb_x < slice_width; sb_x++) {
+
+ /* for each block in a superblock... */
+ for (j = 0; j < 16; j++) {
+ x = 4*sb_x + hilbert_offset[j][0];
+ y = 4*sb_y + hilbert_offset[j][1];
+ fragment = y*fragment_width + x;
+
+ i = fragment_start + fragment;
+
+ // bounds check
+ if (x >= fragment_width || y >= fragment_height)
+ continue;
+
+ first_pixel = 8*y*stride + 8*x;
+
+ if (do_await && s->all_fragments[i].coding_method != MODE_INTRA)
+ await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift);
+
+ /* transform if this block was coded */
+ if (s->all_fragments[i].coding_method != MODE_COPY) {
+ if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
+ (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
+ motion_source= golden_plane;
+ else
+ motion_source= last_plane;
+
+ motion_source += first_pixel;
+ motion_halfpel_index = 0;
+
+ /* sort out the motion vector if this fragment is coded
+ * using a motion vector method */
+ if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
+ (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
+ int src_x, src_y;
+ motion_x = motion_val[fragment][0];
+ motion_y = motion_val[fragment][1];
+
+ src_x= (motion_x>>1) + 8*x;
+ src_y= (motion_y>>1) + 8*y;
+
+ motion_halfpel_index = motion_x & 0x01;
+ motion_source += (motion_x >> 1);
+
+ motion_halfpel_index |= (motion_y & 0x01) << 1;
+ motion_source += ((motion_y >> 1) * stride);
+
+ if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
+ uint8_t *temp= s->edge_emu_buffer;
+ if(stride<0) temp -= 8*stride;
+
+ s->vdsp.emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
+ motion_source= temp;
+ }
+ }
+
+
+ /* first, take care of copying a block from either the
+ * previous or the golden frame */
+ if (s->all_fragments[i].coding_method != MODE_INTRA) {
+ /* Note, it is possible to implement all MC cases with
+ put_no_rnd_pixels_l2 which would look more like the
+ VP3 source but this would be slower as
+ put_no_rnd_pixels_tab is better optimzed */
+ if(motion_halfpel_index != 3){
+ s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
+ output_plane + first_pixel,
+ motion_source, stride, 8);
+ }else{
+ int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
+ s->vp3dsp.put_no_rnd_pixels_l2(
+ output_plane + first_pixel,
+ motion_source - d,
+ motion_source + stride + 1 + d,
+ stride, 8);
+ }
+ }
+
+ /* invert DCT and place (or add) in final output */
+
+ if (s->all_fragments[i].coding_method == MODE_INTRA) {
+ vp3_dequant(s, s->all_fragments + i, plane, 0, block);
+ s->vp3dsp.idct_put(
+ output_plane + first_pixel,
+ stride,
+ block);
+ } else {
+ if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) {
+ s->vp3dsp.idct_add(
+ output_plane + first_pixel,
+ stride,
+ block);
+ } else {
+ s->vp3dsp.idct_dc_add(output_plane + first_pixel, stride, block);
+ }
+ }
+ } else {
+
+ /* copy directly from the previous frame */
+ s->hdsp.put_pixels_tab[1][0](
+ output_plane + first_pixel,
+ last_plane + first_pixel,
+ stride, 8);
+
+ }
+ }
+ }
+
+ // Filter up to the last row in the superblock row
+ if (!s->skip_loop_filter)
+ apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
+ }
+ }
+
+ /* this looks like a good place for slice dispatch... */
+ /* algorithm:
+ * if (slice == s->macroblock_height - 1)
+ * dispatch (both last slice & 2nd-to-last slice);
+ * else if (slice > 0)
+ * dispatch (slice - 1);
+ */
+
+ vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16));
+}
+
+/// Allocate tables for per-frame data in Vp3DecodeContext
+static av_cold int allocate_tables(AVCodecContext *avctx)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+ int y_fragment_count, c_fragment_count;
+
+ y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
+ c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
+
+ s->superblock_coding = av_malloc(s->superblock_count);
+ s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
+ s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
+ s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
+ s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
+ s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
+
+ /* work out the block mapping tables */
+ s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
+ s->macroblock_coding = av_malloc(s->macroblock_count + 1);
+
+ if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
+ !s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding ||
+ !s->motion_val[0] || !s->motion_val[1]) {
+ vp3_decode_end(avctx);
+ return -1;
+ }
+
+ init_block_mapping(s);
+
+ return 0;
+}
+
+static av_cold int init_frames(Vp3DecodeContext *s)
+{
+ s->current_frame.f = av_frame_alloc();
+ s->last_frame.f = av_frame_alloc();
+ s->golden_frame.f = av_frame_alloc();
+
+ if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
+ av_frame_free(&s->current_frame.f);
+ av_frame_free(&s->last_frame.f);
+ av_frame_free(&s->golden_frame.f);
+ return AVERROR(ENOMEM);
+ }
+
+ return 0;
+}
+
+static av_cold int vp3_decode_init(AVCodecContext *avctx)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+ int i, inter, plane, ret;
+ int c_width;
+ int c_height;
+ int y_fragment_count, c_fragment_count;
+
+ ret = init_frames(s);
+ if (ret < 0)
+ return ret;
+
+ avctx->internal->allocate_progress = 1;
+
+ if (avctx->codec_tag == MKTAG('V','P','3','0'))
+ s->version = 0;
+ else
+ s->version = 1;
+
+ s->avctx = avctx;
+ s->width = FFALIGN(avctx->width, 16);
+ s->height = FFALIGN(avctx->height, 16);
+ if (avctx->codec_id != AV_CODEC_ID_THEORA)
+ avctx->pix_fmt = AV_PIX_FMT_YUV420P;
+ avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
+ ff_hpeldsp_init(&s->hdsp, avctx->flags | CODEC_FLAG_BITEXACT);
+ ff_videodsp_init(&s->vdsp, 8);
+ ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
+
+ for (i = 0; i < 64; i++) {
+#define T(x) (x >> 3) | ((x & 7) << 3)
+ s->idct_permutation[i] = T(i);
+ s->idct_scantable[i] = T(ff_zigzag_direct[i]);
+#undef T
+ }
+
+ /* initialize to an impossible value which will force a recalculation
+ * in the first frame decode */
+ for (i = 0; i < 3; i++)
+ s->qps[i] = -1;
+
+ avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
+
+ s->y_superblock_width = (s->width + 31) / 32;
+ s->y_superblock_height = (s->height + 31) / 32;
+ s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
+
+ /* work out the dimensions for the C planes */
+ c_width = s->width >> s->chroma_x_shift;
+ c_height = s->height >> s->chroma_y_shift;
+ s->c_superblock_width = (c_width + 31) / 32;
+ s->c_superblock_height = (c_height + 31) / 32;
+ s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
+
+ s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
+ s->u_superblock_start = s->y_superblock_count;
+ s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
+
+ s->macroblock_width = (s->width + 15) / 16;
+ s->macroblock_height = (s->height + 15) / 16;
+ s->macroblock_count = s->macroblock_width * s->macroblock_height;
+
+ s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
+ s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
+ s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
+ s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
+
+ /* fragment count covers all 8x8 blocks for all 3 planes */
+ y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
+ c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
+ s->fragment_count = y_fragment_count + 2*c_fragment_count;
+ s->fragment_start[1] = y_fragment_count;
+ s->fragment_start[2] = y_fragment_count + c_fragment_count;
+
+ if (!s->theora_tables)
+ {
+ for (i = 0; i < 64; i++) {
+ s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
+ s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
+ s->base_matrix[0][i] = vp31_intra_y_dequant[i];
+ s->base_matrix[1][i] = vp31_intra_c_dequant[i];
+ s->base_matrix[2][i] = vp31_inter_dequant[i];
+ s->filter_limit_values[i] = vp31_filter_limit_values[i];
+ }
+
+ for(inter=0; inter<2; inter++){
+ for(plane=0; plane<3; plane++){
+ s->qr_count[inter][plane]= 1;
+ s->qr_size [inter][plane][0]= 63;
+ s->qr_base [inter][plane][0]=
+ s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
+ }
+ }
+
+ /* init VLC tables */
+ for (i = 0; i < 16; i++) {
+
+ /* DC histograms */
+ init_vlc(&s->dc_vlc[i], 11, 32,
+ &dc_bias[i][0][1], 4, 2,
+ &dc_bias[i][0][0], 4, 2, 0);
+
+ /* group 1 AC histograms */
+ init_vlc(&s->ac_vlc_1[i], 11, 32,
+ &ac_bias_0[i][0][1], 4, 2,
+ &ac_bias_0[i][0][0], 4, 2, 0);
+
+ /* group 2 AC histograms */
+ init_vlc(&s->ac_vlc_2[i], 11, 32,
+ &ac_bias_1[i][0][1], 4, 2,
+ &ac_bias_1[i][0][0], 4, 2, 0);
+
+ /* group 3 AC histograms */
+ init_vlc(&s->ac_vlc_3[i], 11, 32,
+ &ac_bias_2[i][0][1], 4, 2,
+ &ac_bias_2[i][0][0], 4, 2, 0);
+
+ /* group 4 AC histograms */
+ init_vlc(&s->ac_vlc_4[i], 11, 32,
+ &ac_bias_3[i][0][1], 4, 2,
+ &ac_bias_3[i][0][0], 4, 2, 0);
+ }
+ } else {
+
+ for (i = 0; i < 16; i++) {
+ /* DC histograms */
+ if (init_vlc(&s->dc_vlc[i], 11, 32,
+ &s->huffman_table[i][0][1], 8, 4,
+ &s->huffman_table[i][0][0], 8, 4, 0) < 0)
+ goto vlc_fail;
+
+ /* group 1 AC histograms */
+ if (init_vlc(&s->ac_vlc_1[i], 11, 32,
+ &s->huffman_table[i+16][0][1], 8, 4,
+ &s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
+ goto vlc_fail;
+
+ /* group 2 AC histograms */
+ if (init_vlc(&s->ac_vlc_2[i], 11, 32,
+ &s->huffman_table[i+16*2][0][1], 8, 4,
+ &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
+ goto vlc_fail;
+
+ /* group 3 AC histograms */
+ if (init_vlc(&s->ac_vlc_3[i], 11, 32,
+ &s->huffman_table[i+16*3][0][1], 8, 4,
+ &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
+ goto vlc_fail;
+
+ /* group 4 AC histograms */
+ if (init_vlc(&s->ac_vlc_4[i], 11, 32,
+ &s->huffman_table[i+16*4][0][1], 8, 4,
+ &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
+ goto vlc_fail;
+ }
+ }
+
+ init_vlc(&s->superblock_run_length_vlc, 6, 34,
+ &superblock_run_length_vlc_table[0][1], 4, 2,
+ &superblock_run_length_vlc_table[0][0], 4, 2, 0);
+
+ init_vlc(&s->fragment_run_length_vlc, 5, 30,
+ &fragment_run_length_vlc_table[0][1], 4, 2,
+ &fragment_run_length_vlc_table[0][0], 4, 2, 0);
+
+ init_vlc(&s->mode_code_vlc, 3, 8,
+ &mode_code_vlc_table[0][1], 2, 1,
+ &mode_code_vlc_table[0][0], 2, 1, 0);
+
+ init_vlc(&s->motion_vector_vlc, 6, 63,
+ &motion_vector_vlc_table[0][1], 2, 1,
+ &motion_vector_vlc_table[0][0], 2, 1, 0);
+
+ return allocate_tables(avctx);
+
+vlc_fail:
+ av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
+ return -1;
+}
+
+/// Release and shuffle frames after decode finishes
+static int update_frames(AVCodecContext *avctx)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+ int ret = 0;
+
+
+ /* shuffle frames (last = current) */
+ ff_thread_release_buffer(avctx, &s->last_frame);
+ ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame);
+ if (ret < 0)
+ goto fail;
+
+ if (s->keyframe) {
+ ff_thread_release_buffer(avctx, &s->golden_frame);
+ ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame);
+ }
+
+fail:
+ ff_thread_release_buffer(avctx, &s->current_frame);
+ return ret;
+}
+
+static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
+{
+ ff_thread_release_buffer(s->avctx, dst);
+ if (src->f->data[0])
+ return ff_thread_ref_frame(dst, src);
+ return 0;
+}
+
+static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
+{
+ int ret;
+ if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
+ (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
+ (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
+ return ret;
+ return 0;
+}
+
+static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
+{
+ Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
+ int qps_changed = 0, i, err;
+
+#define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
+
+ if (!s1->current_frame.f->data[0]
+ ||s->width != s1->width
+ ||s->height!= s1->height) {
+ if (s != s1)
+ ref_frames(s, s1);
+ return -1;
+ }
+
+ if (s != s1) {
+ // init tables if the first frame hasn't been decoded
+ if (!s->current_frame.f->data[0]) {
+ int y_fragment_count, c_fragment_count;
+ s->avctx = dst;
+ err = allocate_tables(dst);
+ if (err)
+ return err;
+ y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
+ c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
+ memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0]));
+ memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1]));
+ }
+
+ // copy previous frame data
+ if ((err = ref_frames(s, s1)) < 0)
+ return err;
+
+ s->keyframe = s1->keyframe;
+
+ // copy qscale data if necessary
+ for (i = 0; i < 3; i++) {
+ if (s->qps[i] != s1->qps[1]) {
+ qps_changed = 1;
+ memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
+ }
+ }
+
+ if (s->qps[0] != s1->qps[0])
+ memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array));
+
+ if (qps_changed)
+ copy_fields(s, s1, qps, superblock_count);
+#undef copy_fields
+ }
+
+ return update_frames(dst);
+}
+
+static int vp3_decode_frame(AVCodecContext *avctx,
+ void *data, int *got_frame,
+ AVPacket *avpkt)
+{
+ const uint8_t *buf = avpkt->data;
+ int buf_size = avpkt->size;
+ Vp3DecodeContext *s = avctx->priv_data;
+ GetBitContext gb;
+ int i, ret;
+
+ init_get_bits(&gb, buf, buf_size * 8);
+
+#if CONFIG_THEORA_DECODER
+ if (s->theora && get_bits1(&gb))
+ {
+ int type = get_bits(&gb, 7);
+ skip_bits_long(&gb, 6*8); /* "theora" */
+
+ if (s->avctx->active_thread_type&FF_THREAD_FRAME) {
+ av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
+ return AVERROR_PATCHWELCOME;
+ }
+ if (type == 0) {
+ vp3_decode_end(avctx);
+ ret = theora_decode_header(avctx, &gb);
+
+ if (ret < 0) {
+ vp3_decode_end(avctx);
+ } else
+ ret = vp3_decode_init(avctx);
+ return ret;
+ } else if (type == 2) {
+ ret = theora_decode_tables(avctx, &gb);
+ if (ret < 0) {
+ vp3_decode_end(avctx);
+ } else
+ ret = vp3_decode_init(avctx);
+ return ret;
+ }
+
+ av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
+ return -1;
+ }
+#endif
+
+ s->keyframe = !get_bits1(&gb);
+ if (!s->all_fragments) {
+ av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
+ return -1;
+ }
+ if (!s->theora)
+ skip_bits(&gb, 1);
+ for (i = 0; i < 3; i++)
+ s->last_qps[i] = s->qps[i];
+
+ s->nqps=0;
+ do{
+ s->qps[s->nqps++]= get_bits(&gb, 6);
+ } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
+ for (i = s->nqps; i < 3; i++)
+ s->qps[i] = -1;
+
+ if (s->avctx->debug & FF_DEBUG_PICT_INFO)
+ av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
+ s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]);
+
+ s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
+ avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY);
+
+ if (s->qps[0] != s->last_qps[0])
+ init_loop_filter(s);
+
+ for (i = 0; i < s->nqps; i++)
+ // reinit all dequantizers if the first one changed, because
+ // the DC of the first quantizer must be used for all matrices
+ if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
+ init_dequantizer(s, i);
+
+ if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
+ return buf_size;
+
+ s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
+ s->current_frame.f->key_frame = s->keyframe;
+ if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0)
+ goto error;
+
+ if (!s->edge_emu_buffer)
+ s->edge_emu_buffer = av_malloc(9*FFABS(s->current_frame.f->linesize[0]));
+
+ if (s->keyframe) {
+ if (!s->theora)
+ {
+ skip_bits(&gb, 4); /* width code */
+ skip_bits(&gb, 4); /* height code */
+ if (s->version)
+ {
+ s->version = get_bits(&gb, 5);
+ if (avctx->frame_number == 0)
+ av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
+ }
+ }
+ if (s->version || s->theora)
+ {
+ if (get_bits1(&gb))
+ av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
+ skip_bits(&gb, 2); /* reserved? */
+ }
+ } else {
+ if (!s->golden_frame.f->data[0]) {
+ av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
+
+ s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
+ if (ff_thread_get_buffer(avctx, &s->golden_frame, AV_GET_BUFFER_FLAG_REF) < 0)
+ goto error;
+ ff_thread_release_buffer(avctx, &s->last_frame);
+ if ((ret = ff_thread_ref_frame(&s->last_frame, &s->golden_frame)) < 0)
+ goto error;
+ ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
+ }
+ }
+
+ memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
+ ff_thread_finish_setup(avctx);
+
+ if (unpack_superblocks(s, &gb)){
+ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
+ goto error;
+ }
+ if (unpack_modes(s, &gb)){
+ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
+ goto error;
+ }
+ if (unpack_vectors(s, &gb)){
+ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
+ goto error;
+ }
+ if (unpack_block_qpis(s, &gb)){
+ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
+ goto error;
+ }
+ if (unpack_dct_coeffs(s, &gb)){
+ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
+ goto error;
+ }
+
+ for (i = 0; i < 3; i++) {
+ int height = s->height >> (i && s->chroma_y_shift);
+ if (s->flipped_image)
+ s->data_offset[i] = 0;
+ else
+ s->data_offset[i] = (height-1) * s->current_frame.f->linesize[i];
+ }
+
+ s->last_slice_end = 0;
+ for (i = 0; i < s->c_superblock_height; i++)
+ render_slice(s, i);
+
+ // filter the last row
+ for (i = 0; i < 3; i++) {
+ int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
+ apply_loop_filter(s, i, row, row+1);
+ }
+ vp3_draw_horiz_band(s, s->avctx->height);
+
+ if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
+ return ret;
+ *got_frame = 1;
+
+ if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME)) {
+ ret = update_frames(avctx);
+ if (ret < 0)
+ return ret;
+ }
+
+ return buf_size;
+
+error:
+ ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
+
+ if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
+ av_frame_unref(s->current_frame.f);
+
+ return -1;
+}
+
+static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+
+ if (get_bits1(gb)) {
+ int token;
+ if (s->entries >= 32) { /* overflow */
+ av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
+ return -1;
+ }
+ token = get_bits(gb, 5);
+ av_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
+ s->hti, s->hbits, token, s->entries, s->huff_code_size);
+ s->huffman_table[s->hti][token][0] = s->hbits;
+ s->huffman_table[s->hti][token][1] = s->huff_code_size;
+ s->entries++;
+ }
+ else {
+ if (s->huff_code_size >= 32) {/* overflow */
+ av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
+ return -1;
+ }
+ s->huff_code_size++;
+ s->hbits <<= 1;
+ if (read_huffman_tree(avctx, gb))
+ return -1;
+ s->hbits |= 1;
+ if (read_huffman_tree(avctx, gb))
+ return -1;
+ s->hbits >>= 1;
+ s->huff_code_size--;
+ }
+ return 0;
+}
+
+static int vp3_init_thread_copy(AVCodecContext *avctx)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+
+ s->superblock_coding = NULL;
+ s->all_fragments = NULL;
+ s->coded_fragment_list[0] = NULL;
+ s->dct_tokens_base = NULL;
+ s->superblock_fragments = NULL;
+ s->macroblock_coding = NULL;
+ s->motion_val[0] = NULL;
+ s->motion_val[1] = NULL;
+ s->edge_emu_buffer = NULL;
+
+ return init_frames(s);
+}
+
+#if CONFIG_THEORA_DECODER
+static const enum AVPixelFormat theora_pix_fmts[4] = {
+ AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P
+};
+
+static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+ int visible_width, visible_height, colorspace;
+ int offset_x = 0, offset_y = 0;
+ AVRational fps, aspect;
+
+ s->theora = get_bits_long(gb, 24);
+ av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
+
+ /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
+ /* but previous versions have the image flipped relative to vp3 */
+ if (s->theora < 0x030200)
+ {
+ s->flipped_image = 1;
+ av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
+ }
+
+ visible_width = s->width = get_bits(gb, 16) << 4;
+ visible_height = s->height = get_bits(gb, 16) << 4;
+
+ if(av_image_check_size(s->width, s->height, 0, avctx)){
+ av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
+ s->width= s->height= 0;
+ return -1;
+ }
+
+ if (s->theora >= 0x030200) {
+ visible_width = get_bits_long(gb, 24);
+ visible_height = get_bits_long(gb, 24);
+
+ offset_x = get_bits(gb, 8); /* offset x */
+ offset_y = get_bits(gb, 8); /* offset y, from bottom */
+ }
+
+ fps.num = get_bits_long(gb, 32);
+ fps.den = get_bits_long(gb, 32);
+ if (fps.num && fps.den) {
+ av_reduce(&avctx->time_base.num, &avctx->time_base.den,
+ fps.den, fps.num, 1<<30);
+ }
+
+ aspect.num = get_bits_long(gb, 24);
+ aspect.den = get_bits_long(gb, 24);
+ if (aspect.num && aspect.den) {
+ av_reduce(&avctx->sample_aspect_ratio.num,
+ &avctx->sample_aspect_ratio.den,
+ aspect.num, aspect.den, 1<<30);
+ }
+
+ if (s->theora < 0x030200)
+ skip_bits(gb, 5); /* keyframe frequency force */
+ colorspace = get_bits(gb, 8);
+ skip_bits(gb, 24); /* bitrate */
+
+ skip_bits(gb, 6); /* quality hint */
+
+ if (s->theora >= 0x030200)
+ {
+ skip_bits(gb, 5); /* keyframe frequency force */
+ avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
+ if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
+ av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
+ return AVERROR_INVALIDDATA;
+ }
+ skip_bits(gb, 3); /* reserved */
+ }
+
+// align_get_bits(gb);
+
+ if ( visible_width <= s->width && visible_width > s->width-16
+ && visible_height <= s->height && visible_height > s->height-16
+ && !offset_x && (offset_y == s->height - visible_height))
+ avcodec_set_dimensions(avctx, visible_width, visible_height);
+ else
+ avcodec_set_dimensions(avctx, s->width, s->height);
+
+ if (colorspace == 1) {
+ avctx->color_primaries = AVCOL_PRI_BT470M;
+ } else if (colorspace == 2) {
+ avctx->color_primaries = AVCOL_PRI_BT470BG;
+ }
+ if (colorspace == 1 || colorspace == 2) {
+ avctx->colorspace = AVCOL_SPC_BT470BG;
+ avctx->color_trc = AVCOL_TRC_BT709;
+ }
+
+ return 0;
+}
+
+static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+ int i, n, matrices, inter, plane;
+
+ if (s->theora >= 0x030200) {
+ n = get_bits(gb, 3);
+ /* loop filter limit values table */
+ if (n)
+ for (i = 0; i < 64; i++)
+ s->filter_limit_values[i] = get_bits(gb, n);
+ }
+
+ if (s->theora >= 0x030200)
+ n = get_bits(gb, 4) + 1;
+ else
+ n = 16;
+ /* quality threshold table */
+ for (i = 0; i < 64; i++)
+ s->coded_ac_scale_factor[i] = get_bits(gb, n);
+
+ if (s->theora >= 0x030200)
+ n = get_bits(gb, 4) + 1;
+ else
+ n = 16;
+ /* dc scale factor table */
+ for (i = 0; i < 64; i++)
+ s->coded_dc_scale_factor[i] = get_bits(gb, n);
+
+ if (s->theora >= 0x030200)
+ matrices = get_bits(gb, 9) + 1;
+ else
+ matrices = 3;
+
+ if(matrices > 384){
+ av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
+ return -1;
+ }
+
+ for(n=0; n<matrices; n++){
+ for (i = 0; i < 64; i++)
+ s->base_matrix[n][i]= get_bits(gb, 8);
+ }
+
+ for (inter = 0; inter <= 1; inter++) {
+ for (plane = 0; plane <= 2; plane++) {
+ int newqr= 1;
+ if (inter || plane > 0)
+ newqr = get_bits1(gb);
+ if (!newqr) {
+ int qtj, plj;
+ if(inter && get_bits1(gb)){
+ qtj = 0;
+ plj = plane;
+ }else{
+ qtj= (3*inter + plane - 1) / 3;
+ plj= (plane + 2) % 3;
+ }
+ s->qr_count[inter][plane]= s->qr_count[qtj][plj];
+ memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
+ memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
+ } else {
+ int qri= 0;
+ int qi = 0;
+
+ for(;;){
+ i= get_bits(gb, av_log2(matrices-1)+1);
+ if(i>= matrices){
+ av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
+ return -1;
+ }
+ s->qr_base[inter][plane][qri]= i;
+ if(qi >= 63)
+ break;
+ i = get_bits(gb, av_log2(63-qi)+1) + 1;
+ s->qr_size[inter][plane][qri++]= i;
+ qi += i;
+ }
+
+ if (qi > 63) {
+ av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
+ return -1;
+ }
+ s->qr_count[inter][plane]= qri;
+ }
+ }
+ }
+
+ /* Huffman tables */
+ for (s->hti = 0; s->hti < 80; s->hti++) {
+ s->entries = 0;
+ s->huff_code_size = 1;
+ if (!get_bits1(gb)) {
+ s->hbits = 0;
+ if(read_huffman_tree(avctx, gb))
+ return -1;
+ s->hbits = 1;
+ if(read_huffman_tree(avctx, gb))
+ return -1;
+ }
+ }
+
+ s->theora_tables = 1;
+
+ return 0;
+}
+
+static av_cold int theora_decode_init(AVCodecContext *avctx)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+ GetBitContext gb;
+ int ptype;
+ uint8_t *header_start[3];
+ int header_len[3];
+ int i;
+
+ avctx->pix_fmt = AV_PIX_FMT_YUV420P;
+
+ s->theora = 1;
+
+ if (!avctx->extradata_size)
+ {
+ av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
+ return -1;
+ }
+
+ if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
+ 42, header_start, header_len) < 0) {
+ av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
+ return -1;
+ }
+
+ for(i=0;i<3;i++) {
+ if (header_len[i] <= 0)
+ continue;
+ init_get_bits(&gb, header_start[i], header_len[i] * 8);
+
+ ptype = get_bits(&gb, 8);
+
+ if (!(ptype & 0x80))
+ {
+ av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
+// return -1;
+ }
+
+ // FIXME: Check for this as well.
+ skip_bits_long(&gb, 6*8); /* "theora" */
+
+ switch(ptype)
+ {
+ case 0x80:
+ if (theora_decode_header(avctx, &gb) < 0)
+ return -1;
+ break;
+ case 0x81:
+// FIXME: is this needed? it breaks sometimes
+// theora_decode_comments(avctx, gb);
+ break;
+ case 0x82:
+ if (theora_decode_tables(avctx, &gb))
+ return -1;
+ break;
+ default:
+ av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
+ break;
+ }
+ if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
+ av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
+ if (s->theora < 0x030200)
+ break;
+ }
+
+ return vp3_decode_init(avctx);
+}
+
+AVCodec ff_theora_decoder = {
+ .name = "theora",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .id = AV_CODEC_ID_THEORA,
+ .priv_data_size = sizeof(Vp3DecodeContext),
+ .init = theora_decode_init,
+ .close = vp3_decode_end,
+ .decode = vp3_decode_frame,
+ .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
+ CODEC_CAP_FRAME_THREADS,
+ .flush = vp3_decode_flush,
+ .long_name = NULL_IF_CONFIG_SMALL("Theora"),
+ .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
+ .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
+};
+#endif
+
+AVCodec ff_vp3_decoder = {
+ .name = "vp3",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .id = AV_CODEC_ID_VP3,
+ .priv_data_size = sizeof(Vp3DecodeContext),
+ .init = vp3_decode_init,
+ .close = vp3_decode_end,
+ .decode = vp3_decode_frame,
+ .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
+ CODEC_CAP_FRAME_THREADS,
+ .flush = vp3_decode_flush,
+ .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
+ .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
+ .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
+};