summaryrefslogtreecommitdiff
path: root/ffmpeg/libavcodec/adpcm.c
diff options
context:
space:
mode:
Diffstat (limited to 'ffmpeg/libavcodec/adpcm.c')
-rw-r--r--ffmpeg/libavcodec/adpcm.c1432
1 files changed, 1432 insertions, 0 deletions
diff --git a/ffmpeg/libavcodec/adpcm.c b/ffmpeg/libavcodec/adpcm.c
new file mode 100644
index 0000000..3f8cfbc
--- /dev/null
+++ b/ffmpeg/libavcodec/adpcm.c
@@ -0,0 +1,1432 @@
+/*
+ * Copyright (c) 2001-2003 The ffmpeg Project
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+#include "avcodec.h"
+#include "get_bits.h"
+#include "put_bits.h"
+#include "bytestream.h"
+#include "adpcm.h"
+#include "adpcm_data.h"
+#include "internal.h"
+
+/**
+ * @file
+ * ADPCM decoders
+ * First version by Francois Revol (revol@free.fr)
+ * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
+ * by Mike Melanson (melanson@pcisys.net)
+ * CD-ROM XA ADPCM codec by BERO
+ * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
+ * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
+ * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
+ * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
+ * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
+ * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
+ * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
+ *
+ * Features and limitations:
+ *
+ * Reference documents:
+ * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
+ * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
+ * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
+ * http://openquicktime.sourceforge.net/
+ * XAnim sources (xa_codec.c) http://xanim.polter.net/
+ * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
+ * SoX source code http://sox.sourceforge.net/
+ *
+ * CD-ROM XA:
+ * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
+ * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
+ * readstr http://www.geocities.co.jp/Playtown/2004/
+ */
+
+/* These are for CD-ROM XA ADPCM */
+static const int xa_adpcm_table[5][2] = {
+ { 0, 0 },
+ { 60, 0 },
+ { 115, -52 },
+ { 98, -55 },
+ { 122, -60 }
+};
+
+static const int ea_adpcm_table[] = {
+ 0, 240, 460, 392,
+ 0, 0, -208, -220,
+ 0, 1, 3, 4,
+ 7, 8, 10, 11,
+ 0, -1, -3, -4
+};
+
+// padded to zero where table size is less then 16
+static const int swf_index_tables[4][16] = {
+ /*2*/ { -1, 2 },
+ /*3*/ { -1, -1, 2, 4 },
+ /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
+ /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
+};
+
+/* end of tables */
+
+typedef struct ADPCMDecodeContext {
+ ADPCMChannelStatus status[6];
+ int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
+} ADPCMDecodeContext;
+
+static av_cold int adpcm_decode_init(AVCodecContext * avctx)
+{
+ ADPCMDecodeContext *c = avctx->priv_data;
+ unsigned int min_channels = 1;
+ unsigned int max_channels = 2;
+
+ switch(avctx->codec->id) {
+ case AV_CODEC_ID_ADPCM_EA:
+ min_channels = 2;
+ break;
+ case AV_CODEC_ID_ADPCM_AFC:
+ case AV_CODEC_ID_ADPCM_EA_R1:
+ case AV_CODEC_ID_ADPCM_EA_R2:
+ case AV_CODEC_ID_ADPCM_EA_R3:
+ case AV_CODEC_ID_ADPCM_EA_XAS:
+ case AV_CODEC_ID_ADPCM_THP:
+ max_channels = 6;
+ break;
+ }
+ if (avctx->channels < min_channels || avctx->channels > max_channels) {
+ av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
+ return AVERROR(EINVAL);
+ }
+
+ switch(avctx->codec->id) {
+ case AV_CODEC_ID_ADPCM_CT:
+ c->status[0].step = c->status[1].step = 511;
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_WAV:
+ if (avctx->bits_per_coded_sample != 4) {
+ av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
+ return -1;
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_APC:
+ if (avctx->extradata && avctx->extradata_size >= 8) {
+ c->status[0].predictor = AV_RL32(avctx->extradata);
+ c->status[1].predictor = AV_RL32(avctx->extradata + 4);
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_WS:
+ if (avctx->extradata && avctx->extradata_size >= 2)
+ c->vqa_version = AV_RL16(avctx->extradata);
+ break;
+ default:
+ break;
+ }
+
+ switch(avctx->codec->id) {
+ case AV_CODEC_ID_ADPCM_IMA_QT:
+ case AV_CODEC_ID_ADPCM_IMA_WAV:
+ case AV_CODEC_ID_ADPCM_4XM:
+ case AV_CODEC_ID_ADPCM_XA:
+ case AV_CODEC_ID_ADPCM_EA_R1:
+ case AV_CODEC_ID_ADPCM_EA_R2:
+ case AV_CODEC_ID_ADPCM_EA_R3:
+ case AV_CODEC_ID_ADPCM_EA_XAS:
+ case AV_CODEC_ID_ADPCM_THP:
+ case AV_CODEC_ID_ADPCM_AFC:
+ avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_WS:
+ avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
+ AV_SAMPLE_FMT_S16;
+ break;
+ default:
+ avctx->sample_fmt = AV_SAMPLE_FMT_S16;
+ }
+
+ return 0;
+}
+
+static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
+{
+ int step_index;
+ int predictor;
+ int sign, delta, diff, step;
+
+ step = ff_adpcm_step_table[c->step_index];
+ step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
+ step_index = av_clip(step_index, 0, 88);
+
+ sign = nibble & 8;
+ delta = nibble & 7;
+ /* perform direct multiplication instead of series of jumps proposed by
+ * the reference ADPCM implementation since modern CPUs can do the mults
+ * quickly enough */
+ diff = ((2 * delta + 1) * step) >> shift;
+ predictor = c->predictor;
+ if (sign) predictor -= diff;
+ else predictor += diff;
+
+ c->predictor = av_clip_int16(predictor);
+ c->step_index = step_index;
+
+ return (short)c->predictor;
+}
+
+static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
+{
+ int step_index;
+ int predictor;
+ int diff, step;
+
+ step = ff_adpcm_step_table[c->step_index];
+ step_index = c->step_index + ff_adpcm_index_table[nibble];
+ step_index = av_clip(step_index, 0, 88);
+
+ diff = step >> 3;
+ if (nibble & 4) diff += step;
+ if (nibble & 2) diff += step >> 1;
+ if (nibble & 1) diff += step >> 2;
+
+ if (nibble & 8)
+ predictor = c->predictor - diff;
+ else
+ predictor = c->predictor + diff;
+
+ c->predictor = av_clip_int16(predictor);
+ c->step_index = step_index;
+
+ return c->predictor;
+}
+
+static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
+{
+ int predictor;
+
+ predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
+ predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
+
+ c->sample2 = c->sample1;
+ c->sample1 = av_clip_int16(predictor);
+ c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
+ if (c->idelta < 16) c->idelta = 16;
+
+ return c->sample1;
+}
+
+static inline short adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
+{
+ int step_index, predictor, sign, delta, diff, step;
+
+ step = ff_adpcm_oki_step_table[c->step_index];
+ step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
+ step_index = av_clip(step_index, 0, 48);
+
+ sign = nibble & 8;
+ delta = nibble & 7;
+ diff = ((2 * delta + 1) * step) >> 3;
+ predictor = c->predictor;
+ if (sign) predictor -= diff;
+ else predictor += diff;
+
+ c->predictor = av_clip(predictor, -2048, 2047);
+ c->step_index = step_index;
+
+ return c->predictor << 4;
+}
+
+static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
+{
+ int sign, delta, diff;
+ int new_step;
+
+ sign = nibble & 8;
+ delta = nibble & 7;
+ /* perform direct multiplication instead of series of jumps proposed by
+ * the reference ADPCM implementation since modern CPUs can do the mults
+ * quickly enough */
+ diff = ((2 * delta + 1) * c->step) >> 3;
+ /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
+ c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
+ c->predictor = av_clip_int16(c->predictor);
+ /* calculate new step and clamp it to range 511..32767 */
+ new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
+ c->step = av_clip(new_step, 511, 32767);
+
+ return (short)c->predictor;
+}
+
+static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
+{
+ int sign, delta, diff;
+
+ sign = nibble & (1<<(size-1));
+ delta = nibble & ((1<<(size-1))-1);
+ diff = delta << (7 + c->step + shift);
+
+ /* clamp result */
+ c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
+
+ /* calculate new step */
+ if (delta >= (2*size - 3) && c->step < 3)
+ c->step++;
+ else if (delta == 0 && c->step > 0)
+ c->step--;
+
+ return (short) c->predictor;
+}
+
+static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
+{
+ if(!c->step) {
+ c->predictor = 0;
+ c->step = 127;
+ }
+
+ c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
+ c->predictor = av_clip_int16(c->predictor);
+ c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
+ c->step = av_clip(c->step, 127, 24567);
+ return c->predictor;
+}
+
+static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
+ const uint8_t *in, ADPCMChannelStatus *left,
+ ADPCMChannelStatus *right, int channels, int sample_offset)
+{
+ int i, j;
+ int shift,filter,f0,f1;
+ int s_1,s_2;
+ int d,s,t;
+
+ out0 += sample_offset;
+ if (channels == 1)
+ out1 = out0 + 28;
+ else
+ out1 += sample_offset;
+
+ for(i=0;i<4;i++) {
+ shift = 12 - (in[4+i*2] & 15);
+ filter = in[4+i*2] >> 4;
+ if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
+ avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
+ filter=0;
+ }
+ f0 = xa_adpcm_table[filter][0];
+ f1 = xa_adpcm_table[filter][1];
+
+ s_1 = left->sample1;
+ s_2 = left->sample2;
+
+ for(j=0;j<28;j++) {
+ d = in[16+i+j*4];
+
+ t = sign_extend(d, 4);
+ s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
+ s_2 = s_1;
+ s_1 = av_clip_int16(s);
+ out0[j] = s_1;
+ }
+
+ if (channels == 2) {
+ left->sample1 = s_1;
+ left->sample2 = s_2;
+ s_1 = right->sample1;
+ s_2 = right->sample2;
+ }
+
+ shift = 12 - (in[5+i*2] & 15);
+ filter = in[5+i*2] >> 4;
+ if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
+ avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
+ filter=0;
+ }
+
+ f0 = xa_adpcm_table[filter][0];
+ f1 = xa_adpcm_table[filter][1];
+
+ for(j=0;j<28;j++) {
+ d = in[16+i+j*4];
+
+ t = sign_extend(d >> 4, 4);
+ s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
+ s_2 = s_1;
+ s_1 = av_clip_int16(s);
+ out1[j] = s_1;
+ }
+
+ if (channels == 2) {
+ right->sample1 = s_1;
+ right->sample2 = s_2;
+ } else {
+ left->sample1 = s_1;
+ left->sample2 = s_2;
+ }
+
+ out0 += 28 * (3 - channels);
+ out1 += 28 * (3 - channels);
+ }
+
+ return 0;
+}
+
+static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
+{
+ ADPCMDecodeContext *c = avctx->priv_data;
+ GetBitContext gb;
+ const int *table;
+ int k0, signmask, nb_bits, count;
+ int size = buf_size*8;
+ int i;
+
+ init_get_bits(&gb, buf, size);
+
+ //read bits & initial values
+ nb_bits = get_bits(&gb, 2)+2;
+ table = swf_index_tables[nb_bits-2];
+ k0 = 1 << (nb_bits-2);
+ signmask = 1 << (nb_bits-1);
+
+ while (get_bits_count(&gb) <= size - 22*avctx->channels) {
+ for (i = 0; i < avctx->channels; i++) {
+ *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
+ c->status[i].step_index = get_bits(&gb, 6);
+ }
+
+ for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
+ int i;
+
+ for (i = 0; i < avctx->channels; i++) {
+ // similar to IMA adpcm
+ int delta = get_bits(&gb, nb_bits);
+ int step = ff_adpcm_step_table[c->status[i].step_index];
+ long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
+ int k = k0;
+
+ do {
+ if (delta & k)
+ vpdiff += step;
+ step >>= 1;
+ k >>= 1;
+ } while(k);
+ vpdiff += step;
+
+ if (delta & signmask)
+ c->status[i].predictor -= vpdiff;
+ else
+ c->status[i].predictor += vpdiff;
+
+ c->status[i].step_index += table[delta & (~signmask)];
+
+ c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
+ c->status[i].predictor = av_clip_int16(c->status[i].predictor);
+
+ *samples++ = c->status[i].predictor;
+ }
+ }
+ }
+}
+
+/**
+ * Get the number of samples that will be decoded from the packet.
+ * In one case, this is actually the maximum number of samples possible to
+ * decode with the given buf_size.
+ *
+ * @param[out] coded_samples set to the number of samples as coded in the
+ * packet, or 0 if the codec does not encode the
+ * number of samples in each frame.
+ */
+static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
+ int buf_size, int *coded_samples)
+{
+ ADPCMDecodeContext *s = avctx->priv_data;
+ int nb_samples = 0;
+ int ch = avctx->channels;
+ int has_coded_samples = 0;
+ int header_size;
+
+ *coded_samples = 0;
+
+ if(ch <= 0)
+ return 0;
+
+ switch (avctx->codec->id) {
+ /* constant, only check buf_size */
+ case AV_CODEC_ID_ADPCM_EA_XAS:
+ if (buf_size < 76 * ch)
+ return 0;
+ nb_samples = 128;
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_QT:
+ if (buf_size < 34 * ch)
+ return 0;
+ nb_samples = 64;
+ break;
+ /* simple 4-bit adpcm */
+ case AV_CODEC_ID_ADPCM_CT:
+ case AV_CODEC_ID_ADPCM_IMA_APC:
+ case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
+ case AV_CODEC_ID_ADPCM_IMA_OKI:
+ case AV_CODEC_ID_ADPCM_IMA_WS:
+ case AV_CODEC_ID_ADPCM_YAMAHA:
+ nb_samples = buf_size * 2 / ch;
+ break;
+ }
+ if (nb_samples)
+ return nb_samples;
+
+ /* simple 4-bit adpcm, with header */
+ header_size = 0;
+ switch (avctx->codec->id) {
+ case AV_CODEC_ID_ADPCM_4XM:
+ case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
+ case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
+ case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
+ }
+ if (header_size > 0)
+ return (buf_size - header_size) * 2 / ch;
+
+ /* more complex formats */
+ switch (avctx->codec->id) {
+ case AV_CODEC_ID_ADPCM_EA:
+ has_coded_samples = 1;
+ *coded_samples = bytestream2_get_le32(gb);
+ *coded_samples -= *coded_samples % 28;
+ nb_samples = (buf_size - 12) / 30 * 28;
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
+ has_coded_samples = 1;
+ *coded_samples = bytestream2_get_le32(gb);
+ nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
+ break;
+ case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
+ nb_samples = (buf_size - ch) / ch * 2;
+ break;
+ case AV_CODEC_ID_ADPCM_EA_R1:
+ case AV_CODEC_ID_ADPCM_EA_R2:
+ case AV_CODEC_ID_ADPCM_EA_R3:
+ /* maximum number of samples */
+ /* has internal offsets and a per-frame switch to signal raw 16-bit */
+ has_coded_samples = 1;
+ switch (avctx->codec->id) {
+ case AV_CODEC_ID_ADPCM_EA_R1:
+ header_size = 4 + 9 * ch;
+ *coded_samples = bytestream2_get_le32(gb);
+ break;
+ case AV_CODEC_ID_ADPCM_EA_R2:
+ header_size = 4 + 5 * ch;
+ *coded_samples = bytestream2_get_le32(gb);
+ break;
+ case AV_CODEC_ID_ADPCM_EA_R3:
+ header_size = 4 + 5 * ch;
+ *coded_samples = bytestream2_get_be32(gb);
+ break;
+ }
+ *coded_samples -= *coded_samples % 28;
+ nb_samples = (buf_size - header_size) * 2 / ch;
+ nb_samples -= nb_samples % 28;
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_DK3:
+ if (avctx->block_align > 0)
+ buf_size = FFMIN(buf_size, avctx->block_align);
+ nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_DK4:
+ if (avctx->block_align > 0)
+ buf_size = FFMIN(buf_size, avctx->block_align);
+ nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_WAV:
+ if (avctx->block_align > 0)
+ buf_size = FFMIN(buf_size, avctx->block_align);
+ nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
+ break;
+ case AV_CODEC_ID_ADPCM_MS:
+ if (avctx->block_align > 0)
+ buf_size = FFMIN(buf_size, avctx->block_align);
+ nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
+ break;
+ case AV_CODEC_ID_ADPCM_SBPRO_2:
+ case AV_CODEC_ID_ADPCM_SBPRO_3:
+ case AV_CODEC_ID_ADPCM_SBPRO_4:
+ {
+ int samples_per_byte;
+ switch (avctx->codec->id) {
+ case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
+ case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
+ case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
+ }
+ if (!s->status[0].step_index) {
+ nb_samples++;
+ buf_size -= ch;
+ }
+ nb_samples += buf_size * samples_per_byte / ch;
+ break;
+ }
+ case AV_CODEC_ID_ADPCM_SWF:
+ {
+ int buf_bits = buf_size * 8 - 2;
+ int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
+ int block_hdr_size = 22 * ch;
+ int block_size = block_hdr_size + nbits * ch * 4095;
+ int nblocks = buf_bits / block_size;
+ int bits_left = buf_bits - nblocks * block_size;
+ nb_samples = nblocks * 4096;
+ if (bits_left >= block_hdr_size)
+ nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
+ break;
+ }
+ case AV_CODEC_ID_ADPCM_THP:
+ has_coded_samples = 1;
+ bytestream2_skip(gb, 4); // channel size
+ *coded_samples = bytestream2_get_be32(gb);
+ *coded_samples -= *coded_samples % 14;
+ nb_samples = (buf_size - (8 + 36 * ch)) / (8 * ch) * 14;
+ break;
+ case AV_CODEC_ID_ADPCM_AFC:
+ nb_samples = buf_size / (9 * ch) * 16;
+ break;
+ case AV_CODEC_ID_ADPCM_XA:
+ nb_samples = (buf_size / 128) * 224 / ch;
+ break;
+ }
+
+ /* validate coded sample count */
+ if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
+ return AVERROR_INVALIDDATA;
+
+ return nb_samples;
+}
+
+static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
+ int *got_frame_ptr, AVPacket *avpkt)
+{
+ AVFrame *frame = data;
+ const uint8_t *buf = avpkt->data;
+ int buf_size = avpkt->size;
+ ADPCMDecodeContext *c = avctx->priv_data;
+ ADPCMChannelStatus *cs;
+ int n, m, channel, i;
+ short *samples;
+ int16_t **samples_p;
+ int st; /* stereo */
+ int count1, count2;
+ int nb_samples, coded_samples, ret;
+ GetByteContext gb;
+
+ bytestream2_init(&gb, buf, buf_size);
+ nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples);
+ if (nb_samples <= 0) {
+ av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ /* get output buffer */
+ frame->nb_samples = nb_samples;
+ if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
+ return ret;
+ samples = (short *)frame->data[0];
+ samples_p = (int16_t **)frame->extended_data;
+
+ /* use coded_samples when applicable */
+ /* it is always <= nb_samples, so the output buffer will be large enough */
+ if (coded_samples) {
+ if (coded_samples != nb_samples)
+ av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
+ frame->nb_samples = nb_samples = coded_samples;
+ }
+
+ st = avctx->channels == 2 ? 1 : 0;
+
+ switch(avctx->codec->id) {
+ case AV_CODEC_ID_ADPCM_IMA_QT:
+ /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
+ Channel data is interleaved per-chunk. */
+ for (channel = 0; channel < avctx->channels; channel++) {
+ int predictor;
+ int step_index;
+ cs = &(c->status[channel]);
+ /* (pppppp) (piiiiiii) */
+
+ /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
+ predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
+ step_index = predictor & 0x7F;
+ predictor &= ~0x7F;
+
+ if (cs->step_index == step_index) {
+ int diff = predictor - cs->predictor;
+ if (diff < 0)
+ diff = - diff;
+ if (diff > 0x7f)
+ goto update;
+ } else {
+ update:
+ cs->step_index = step_index;
+ cs->predictor = predictor;
+ }
+
+ if (cs->step_index > 88u){
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
+ channel, cs->step_index);
+ return AVERROR_INVALIDDATA;
+ }
+
+ samples = samples_p[channel];
+
+ for (m = 0; m < 64; m += 2) {
+ int byte = bytestream2_get_byteu(&gb);
+ samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
+ samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
+ }
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_WAV:
+ for(i=0; i<avctx->channels; i++){
+ cs = &(c->status[i]);
+ cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
+
+ cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
+ if (cs->step_index > 88u){
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
+ i, cs->step_index);
+ return AVERROR_INVALIDDATA;
+ }
+ }
+
+ for (n = 0; n < (nb_samples - 1) / 8; n++) {
+ for (i = 0; i < avctx->channels; i++) {
+ cs = &c->status[i];
+ samples = &samples_p[i][1 + n * 8];
+ for (m = 0; m < 8; m += 2) {
+ int v = bytestream2_get_byteu(&gb);
+ samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
+ samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
+ }
+ }
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_4XM:
+ for (i = 0; i < avctx->channels; i++)
+ c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
+
+ for (i = 0; i < avctx->channels; i++) {
+ c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
+ if (c->status[i].step_index > 88u) {
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
+ i, c->status[i].step_index);
+ return AVERROR_INVALIDDATA;
+ }
+ }
+
+ for (i = 0; i < avctx->channels; i++) {
+ samples = (int16_t *)frame->data[i];
+ cs = &c->status[i];
+ for (n = nb_samples >> 1; n > 0; n--) {
+ int v = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
+ *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
+ }
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_MS:
+ {
+ int block_predictor;
+
+ block_predictor = bytestream2_get_byteu(&gb);
+ if (block_predictor > 6) {
+ av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
+ block_predictor);
+ return AVERROR_INVALIDDATA;
+ }
+ c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
+ c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
+ if (st) {
+ block_predictor = bytestream2_get_byteu(&gb);
+ if (block_predictor > 6) {
+ av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
+ block_predictor);
+ return AVERROR_INVALIDDATA;
+ }
+ c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
+ c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
+ }
+ c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
+ if (st){
+ c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
+ }
+
+ c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
+ if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
+ c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
+ if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
+
+ *samples++ = c->status[0].sample2;
+ if (st) *samples++ = c->status[1].sample2;
+ *samples++ = c->status[0].sample1;
+ if (st) *samples++ = c->status[1].sample1;
+ for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
+ int byte = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
+ *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
+ }
+ break;
+ }
+ case AV_CODEC_ID_ADPCM_IMA_DK4:
+ for (channel = 0; channel < avctx->channels; channel++) {
+ cs = &c->status[channel];
+ cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
+ cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
+ if (cs->step_index > 88u){
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
+ channel, cs->step_index);
+ return AVERROR_INVALIDDATA;
+ }
+ }
+ for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
+ int v = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_DK3:
+ {
+ int last_byte = 0;
+ int nibble;
+ int decode_top_nibble_next = 0;
+ int diff_channel;
+ const int16_t *samples_end = samples + avctx->channels * nb_samples;
+
+ bytestream2_skipu(&gb, 10);
+ c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
+ c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
+ c->status[0].step_index = bytestream2_get_byteu(&gb);
+ c->status[1].step_index = bytestream2_get_byteu(&gb);
+ if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
+ c->status[0].step_index, c->status[1].step_index);
+ return AVERROR_INVALIDDATA;
+ }
+ /* sign extend the predictors */
+ diff_channel = c->status[1].predictor;
+
+ /* DK3 ADPCM support macro */
+#define DK3_GET_NEXT_NIBBLE() \
+ if (decode_top_nibble_next) { \
+ nibble = last_byte >> 4; \
+ decode_top_nibble_next = 0; \
+ } else { \
+ last_byte = bytestream2_get_byteu(&gb); \
+ nibble = last_byte & 0x0F; \
+ decode_top_nibble_next = 1; \
+ }
+
+ while (samples < samples_end) {
+
+ /* for this algorithm, c->status[0] is the sum channel and
+ * c->status[1] is the diff channel */
+
+ /* process the first predictor of the sum channel */
+ DK3_GET_NEXT_NIBBLE();
+ adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
+
+ /* process the diff channel predictor */
+ DK3_GET_NEXT_NIBBLE();
+ adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
+
+ /* process the first pair of stereo PCM samples */
+ diff_channel = (diff_channel + c->status[1].predictor) / 2;
+ *samples++ = c->status[0].predictor + c->status[1].predictor;
+ *samples++ = c->status[0].predictor - c->status[1].predictor;
+
+ /* process the second predictor of the sum channel */
+ DK3_GET_NEXT_NIBBLE();
+ adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
+
+ /* process the second pair of stereo PCM samples */
+ diff_channel = (diff_channel + c->status[1].predictor) / 2;
+ *samples++ = c->status[0].predictor + c->status[1].predictor;
+ *samples++ = c->status[0].predictor - c->status[1].predictor;
+ }
+ break;
+ }
+ case AV_CODEC_ID_ADPCM_IMA_ISS:
+ for (channel = 0; channel < avctx->channels; channel++) {
+ cs = &c->status[channel];
+ cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
+ cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
+ if (cs->step_index > 88u){
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
+ channel, cs->step_index);
+ return AVERROR_INVALIDDATA;
+ }
+ }
+
+ for (n = nb_samples >> (1 - st); n > 0; n--) {
+ int v1, v2;
+ int v = bytestream2_get_byteu(&gb);
+ /* nibbles are swapped for mono */
+ if (st) {
+ v1 = v >> 4;
+ v2 = v & 0x0F;
+ } else {
+ v2 = v >> 4;
+ v1 = v & 0x0F;
+ }
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_APC:
+ while (bytestream2_get_bytes_left(&gb) > 0) {
+ int v = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_OKI:
+ while (bytestream2_get_bytes_left(&gb) > 0) {
+ int v = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
+ *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_WS:
+ if (c->vqa_version == 3) {
+ for (channel = 0; channel < avctx->channels; channel++) {
+ int16_t *smp = samples_p[channel];
+
+ for (n = nb_samples / 2; n > 0; n--) {
+ int v = bytestream2_get_byteu(&gb);
+ *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
+ *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
+ }
+ }
+ } else {
+ for (n = nb_samples / 2; n > 0; n--) {
+ for (channel = 0; channel < avctx->channels; channel++) {
+ int v = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
+ samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
+ }
+ samples += avctx->channels;
+ }
+ }
+ bytestream2_seek(&gb, 0, SEEK_END);
+ break;
+ case AV_CODEC_ID_ADPCM_XA:
+ {
+ int16_t *out0 = samples_p[0];
+ int16_t *out1 = samples_p[1];
+ int samples_per_block = 28 * (3 - avctx->channels) * 4;
+ int sample_offset = 0;
+ while (bytestream2_get_bytes_left(&gb) >= 128) {
+ if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
+ &c->status[0], &c->status[1],
+ avctx->channels, sample_offset)) < 0)
+ return ret;
+ bytestream2_skipu(&gb, 128);
+ sample_offset += samples_per_block;
+ }
+ break;
+ }
+ case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
+ for (i=0; i<=st; i++) {
+ c->status[i].step_index = bytestream2_get_le32u(&gb);
+ if (c->status[i].step_index > 88u) {
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
+ i, c->status[i].step_index);
+ return AVERROR_INVALIDDATA;
+ }
+ }
+ for (i=0; i<=st; i++)
+ c->status[i].predictor = bytestream2_get_le32u(&gb);
+
+ for (n = nb_samples >> (1 - st); n > 0; n--) {
+ int byte = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
+ for (n = nb_samples >> (1 - st); n > 0; n--) {
+ int byte = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_EA:
+ {
+ int previous_left_sample, previous_right_sample;
+ int current_left_sample, current_right_sample;
+ int next_left_sample, next_right_sample;
+ int coeff1l, coeff2l, coeff1r, coeff2r;
+ int shift_left, shift_right;
+
+ /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
+ each coding 28 stereo samples. */
+
+ if(avctx->channels != 2)
+ return AVERROR_INVALIDDATA;
+
+ current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
+ previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
+ current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
+ previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
+
+ for (count1 = 0; count1 < nb_samples / 28; count1++) {
+ int byte = bytestream2_get_byteu(&gb);
+ coeff1l = ea_adpcm_table[ byte >> 4 ];
+ coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
+ coeff1r = ea_adpcm_table[ byte & 0x0F];
+ coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
+
+ byte = bytestream2_get_byteu(&gb);
+ shift_left = 20 - (byte >> 4);
+ shift_right = 20 - (byte & 0x0F);
+
+ for (count2 = 0; count2 < 28; count2++) {
+ byte = bytestream2_get_byteu(&gb);
+ next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
+ next_right_sample = sign_extend(byte, 4) << shift_right;
+
+ next_left_sample = (next_left_sample +
+ (current_left_sample * coeff1l) +
+ (previous_left_sample * coeff2l) + 0x80) >> 8;
+ next_right_sample = (next_right_sample +
+ (current_right_sample * coeff1r) +
+ (previous_right_sample * coeff2r) + 0x80) >> 8;
+
+ previous_left_sample = current_left_sample;
+ current_left_sample = av_clip_int16(next_left_sample);
+ previous_right_sample = current_right_sample;
+ current_right_sample = av_clip_int16(next_right_sample);
+ *samples++ = current_left_sample;
+ *samples++ = current_right_sample;
+ }
+ }
+
+ bytestream2_skip(&gb, 2); // Skip terminating 0x0000
+
+ break;
+ }
+ case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
+ {
+ int coeff[2][2], shift[2];
+
+ for(channel = 0; channel < avctx->channels; channel++) {
+ int byte = bytestream2_get_byteu(&gb);
+ for (i=0; i<2; i++)
+ coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
+ shift[channel] = 20 - (byte & 0x0F);
+ }
+ for (count1 = 0; count1 < nb_samples / 2; count1++) {
+ int byte[2];
+
+ byte[0] = bytestream2_get_byteu(&gb);
+ if (st) byte[1] = bytestream2_get_byteu(&gb);
+ for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
+ for(channel = 0; channel < avctx->channels; channel++) {
+ int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
+ sample = (sample +
+ c->status[channel].sample1 * coeff[channel][0] +
+ c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
+ c->status[channel].sample2 = c->status[channel].sample1;
+ c->status[channel].sample1 = av_clip_int16(sample);
+ *samples++ = c->status[channel].sample1;
+ }
+ }
+ }
+ bytestream2_seek(&gb, 0, SEEK_END);
+ break;
+ }
+ case AV_CODEC_ID_ADPCM_EA_R1:
+ case AV_CODEC_ID_ADPCM_EA_R2:
+ case AV_CODEC_ID_ADPCM_EA_R3: {
+ /* channel numbering
+ 2chan: 0=fl, 1=fr
+ 4chan: 0=fl, 1=rl, 2=fr, 3=rr
+ 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
+ const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
+ int previous_sample, current_sample, next_sample;
+ int coeff1, coeff2;
+ int shift;
+ unsigned int channel;
+ uint16_t *samplesC;
+ int count = 0;
+ int offsets[6];
+
+ for (channel=0; channel<avctx->channels; channel++)
+ offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
+ bytestream2_get_le32(&gb)) +
+ (avctx->channels + 1) * 4;
+
+ for (channel=0; channel<avctx->channels; channel++) {
+ bytestream2_seek(&gb, offsets[channel], SEEK_SET);
+ samplesC = samples_p[channel];
+
+ if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
+ current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
+ previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
+ } else {
+ current_sample = c->status[channel].predictor;
+ previous_sample = c->status[channel].prev_sample;
+ }
+
+ for (count1 = 0; count1 < nb_samples / 28; count1++) {
+ int byte = bytestream2_get_byte(&gb);
+ if (byte == 0xEE) { /* only seen in R2 and R3 */
+ current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
+ previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
+
+ for (count2=0; count2<28; count2++)
+ *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
+ } else {
+ coeff1 = ea_adpcm_table[ byte >> 4 ];
+ coeff2 = ea_adpcm_table[(byte >> 4) + 4];
+ shift = 20 - (byte & 0x0F);
+
+ for (count2=0; count2<28; count2++) {
+ if (count2 & 1)
+ next_sample = sign_extend(byte, 4) << shift;
+ else {
+ byte = bytestream2_get_byte(&gb);
+ next_sample = sign_extend(byte >> 4, 4) << shift;
+ }
+
+ next_sample += (current_sample * coeff1) +
+ (previous_sample * coeff2);
+ next_sample = av_clip_int16(next_sample >> 8);
+
+ previous_sample = current_sample;
+ current_sample = next_sample;
+ *samplesC++ = current_sample;
+ }
+ }
+ }
+ if (!count) {
+ count = count1;
+ } else if (count != count1) {
+ av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
+ count = FFMAX(count, count1);
+ }
+
+ if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
+ c->status[channel].predictor = current_sample;
+ c->status[channel].prev_sample = previous_sample;
+ }
+ }
+
+ frame->nb_samples = count * 28;
+ bytestream2_seek(&gb, 0, SEEK_END);
+ break;
+ }
+ case AV_CODEC_ID_ADPCM_EA_XAS:
+ for (channel=0; channel<avctx->channels; channel++) {
+ int coeff[2][4], shift[4];
+ int16_t *s = samples_p[channel];
+ for (n = 0; n < 4; n++, s += 32) {
+ int val = sign_extend(bytestream2_get_le16u(&gb), 16);
+ for (i=0; i<2; i++)
+ coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
+ s[0] = val & ~0x0F;
+
+ val = sign_extend(bytestream2_get_le16u(&gb), 16);
+ shift[n] = 20 - (val & 0x0F);
+ s[1] = val & ~0x0F;
+ }
+
+ for (m=2; m<32; m+=2) {
+ s = &samples_p[channel][m];
+ for (n = 0; n < 4; n++, s += 32) {
+ int level, pred;
+ int byte = bytestream2_get_byteu(&gb);
+
+ level = sign_extend(byte >> 4, 4) << shift[n];
+ pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
+ s[0] = av_clip_int16((level + pred + 0x80) >> 8);
+
+ level = sign_extend(byte, 4) << shift[n];
+ pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
+ s[1] = av_clip_int16((level + pred + 0x80) >> 8);
+ }
+ }
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_AMV:
+ c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
+ c->status[0].step_index = bytestream2_get_le16u(&gb);
+ bytestream2_skipu(&gb, 4);
+ if (c->status[0].step_index > 88u) {
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
+ c->status[0].step_index);
+ return AVERROR_INVALIDDATA;
+ }
+
+ for (n = nb_samples >> (1 - st); n > 0; n--) {
+ int v = bytestream2_get_byteu(&gb);
+
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_IMA_SMJPEG:
+ for (i = 0; i < avctx->channels; i++) {
+ c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
+ c->status[i].step_index = bytestream2_get_byteu(&gb);
+ bytestream2_skipu(&gb, 1);
+ if (c->status[i].step_index > 88u) {
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
+ c->status[i].step_index);
+ return AVERROR_INVALIDDATA;
+ }
+ }
+
+ for (n = nb_samples >> (1 - st); n > 0; n--) {
+ int v = bytestream2_get_byteu(&gb);
+
+ *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
+ *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_CT:
+ for (n = nb_samples >> (1 - st); n > 0; n--) {
+ int v = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
+ *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_SBPRO_4:
+ case AV_CODEC_ID_ADPCM_SBPRO_3:
+ case AV_CODEC_ID_ADPCM_SBPRO_2:
+ if (!c->status[0].step_index) {
+ /* the first byte is a raw sample */
+ *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
+ if (st)
+ *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
+ c->status[0].step_index = 1;
+ nb_samples--;
+ }
+ if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
+ for (n = nb_samples >> (1 - st); n > 0; n--) {
+ int byte = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ byte >> 4, 4, 0);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
+ byte & 0x0F, 4, 0);
+ }
+ } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
+ for (n = nb_samples / 3; n > 0; n--) {
+ int byte = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ byte >> 5 , 3, 0);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ (byte >> 2) & 0x07, 3, 0);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ byte & 0x03, 2, 0);
+ }
+ } else {
+ for (n = nb_samples >> (2 - st); n > 0; n--) {
+ int byte = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ byte >> 6 , 2, 2);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
+ (byte >> 4) & 0x03, 2, 2);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ (byte >> 2) & 0x03, 2, 2);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
+ byte & 0x03, 2, 2);
+ }
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_SWF:
+ adpcm_swf_decode(avctx, buf, buf_size, samples);
+ bytestream2_seek(&gb, 0, SEEK_END);
+ break;
+ case AV_CODEC_ID_ADPCM_YAMAHA:
+ for (n = nb_samples >> (1 - st); n > 0; n--) {
+ int v = bytestream2_get_byteu(&gb);
+ *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
+ *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
+ }
+ break;
+ case AV_CODEC_ID_ADPCM_AFC:
+ {
+ int samples_per_block;
+ int blocks;
+
+ if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
+ samples_per_block = avctx->extradata[0] / 16;
+ blocks = nb_samples / avctx->extradata[0];
+ } else {
+ samples_per_block = nb_samples / 16;
+ blocks = 1;
+ }
+
+ for (m = 0; m < blocks; m++) {
+ for (channel = 0; channel < avctx->channels; channel++) {
+ int prev1 = c->status[channel].sample1;
+ int prev2 = c->status[channel].sample2;
+
+ samples = samples_p[channel] + m * 16;
+ /* Read in every sample for this channel. */
+ for (i = 0; i < samples_per_block; i++) {
+ int byte = bytestream2_get_byteu(&gb);
+ int scale = 1 << (byte >> 4);
+ int index = byte & 0xf;
+ int factor1 = ff_adpcm_afc_coeffs[0][index];
+ int factor2 = ff_adpcm_afc_coeffs[1][index];
+
+ /* Decode 16 samples. */
+ for (n = 0; n < 16; n++) {
+ int32_t sampledat;
+
+ if (n & 1) {
+ sampledat = sign_extend(byte, 4);
+ } else {
+ byte = bytestream2_get_byteu(&gb);
+ sampledat = sign_extend(byte >> 4, 4);
+ }
+
+ sampledat = ((prev1 * factor1 + prev2 * factor2) +
+ ((sampledat * scale) << 11)) >> 11;
+ *samples = av_clip_int16(sampledat);
+ prev2 = prev1;
+ prev1 = *samples++;
+ }
+ }
+
+ c->status[channel].sample1 = prev1;
+ c->status[channel].sample2 = prev2;
+ }
+ }
+ bytestream2_seek(&gb, 0, SEEK_END);
+ break;
+ }
+ case AV_CODEC_ID_ADPCM_THP:
+ {
+ int table[6][16];
+ int ch;
+
+ for (i = 0; i < avctx->channels; i++)
+ for (n = 0; n < 16; n++)
+ table[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
+
+ /* Initialize the previous sample. */
+ for (i = 0; i < avctx->channels; i++) {
+ c->status[i].sample1 = sign_extend(bytestream2_get_be16u(&gb), 16);
+ c->status[i].sample2 = sign_extend(bytestream2_get_be16u(&gb), 16);
+ }
+
+ for (ch = 0; ch < avctx->channels; ch++) {
+ samples = samples_p[ch];
+
+ /* Read in every sample for this channel. */
+ for (i = 0; i < nb_samples / 14; i++) {
+ int byte = bytestream2_get_byteu(&gb);
+ int index = (byte >> 4) & 7;
+ unsigned int exp = byte & 0x0F;
+ int factor1 = table[ch][index * 2];
+ int factor2 = table[ch][index * 2 + 1];
+
+ /* Decode 14 samples. */
+ for (n = 0; n < 14; n++) {
+ int32_t sampledat;
+
+ if (n & 1) {
+ sampledat = sign_extend(byte, 4);
+ } else {
+ byte = bytestream2_get_byteu(&gb);
+ sampledat = sign_extend(byte >> 4, 4);
+ }
+
+ sampledat = ((c->status[ch].sample1 * factor1
+ + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
+ *samples = av_clip_int16(sampledat);
+ c->status[ch].sample2 = c->status[ch].sample1;
+ c->status[ch].sample1 = *samples++;
+ }
+ }
+ }
+ break;
+ }
+
+ default:
+ return -1;
+ }
+
+ if (avpkt->size && bytestream2_tell(&gb) == 0) {
+ av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ *got_frame_ptr = 1;
+
+ return bytestream2_tell(&gb);
+}
+
+
+static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16,
+ AV_SAMPLE_FMT_NONE };
+static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16,
+ AV_SAMPLE_FMT_NONE };
+static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
+ AV_SAMPLE_FMT_S16P,
+ AV_SAMPLE_FMT_NONE };
+
+#define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
+AVCodec ff_ ## name_ ## _decoder = { \
+ .name = #name_, \
+ .type = AVMEDIA_TYPE_AUDIO, \
+ .id = id_, \
+ .priv_data_size = sizeof(ADPCMDecodeContext), \
+ .init = adpcm_decode_init, \
+ .decode = adpcm_decode_frame, \
+ .capabilities = CODEC_CAP_DR1, \
+ .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
+ .sample_fmts = sample_fmts_, \
+}
+
+/* Note: Do not forget to add new entries to the Makefile as well. */
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo Gamecube THP");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
+ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");