summaryrefslogtreecommitdiff
path: root/ffmpeg/libavcodec/apedec.c
diff options
context:
space:
mode:
Diffstat (limited to 'ffmpeg/libavcodec/apedec.c')
-rw-r--r--ffmpeg/libavcodec/apedec.c1145
1 files changed, 1145 insertions, 0 deletions
diff --git a/ffmpeg/libavcodec/apedec.c b/ffmpeg/libavcodec/apedec.c
new file mode 100644
index 0000000..1581d8e
--- /dev/null
+++ b/ffmpeg/libavcodec/apedec.c
@@ -0,0 +1,1145 @@
+/*
+ * Monkey's Audio lossless audio decoder
+ * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
+ * based upon libdemac from Dave Chapman.
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "libavutil/avassert.h"
+#include "libavutil/channel_layout.h"
+#include "libavutil/opt.h"
+#include "avcodec.h"
+#include "dsputil.h"
+#include "bytestream.h"
+#include "internal.h"
+
+/**
+ * @file
+ * Monkey's Audio lossless audio decoder
+ */
+
+#define MAX_CHANNELS 2
+#define MAX_BYTESPERSAMPLE 3
+
+#define APE_FRAMECODE_MONO_SILENCE 1
+#define APE_FRAMECODE_STEREO_SILENCE 3
+#define APE_FRAMECODE_PSEUDO_STEREO 4
+
+#define HISTORY_SIZE 512
+#define PREDICTOR_ORDER 8
+/** Total size of all predictor histories */
+#define PREDICTOR_SIZE 50
+
+#define YDELAYA (18 + PREDICTOR_ORDER*4)
+#define YDELAYB (18 + PREDICTOR_ORDER*3)
+#define XDELAYA (18 + PREDICTOR_ORDER*2)
+#define XDELAYB (18 + PREDICTOR_ORDER)
+
+#define YADAPTCOEFFSA 18
+#define XADAPTCOEFFSA 14
+#define YADAPTCOEFFSB 10
+#define XADAPTCOEFFSB 5
+
+/**
+ * Possible compression levels
+ * @{
+ */
+enum APECompressionLevel {
+ COMPRESSION_LEVEL_FAST = 1000,
+ COMPRESSION_LEVEL_NORMAL = 2000,
+ COMPRESSION_LEVEL_HIGH = 3000,
+ COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
+ COMPRESSION_LEVEL_INSANE = 5000
+};
+/** @} */
+
+#define APE_FILTER_LEVELS 3
+
+/** Filter orders depending on compression level */
+static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
+ { 0, 0, 0 },
+ { 16, 0, 0 },
+ { 64, 0, 0 },
+ { 32, 256, 0 },
+ { 16, 256, 1280 }
+};
+
+/** Filter fraction bits depending on compression level */
+static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
+ { 0, 0, 0 },
+ { 11, 0, 0 },
+ { 11, 0, 0 },
+ { 10, 13, 0 },
+ { 11, 13, 15 }
+};
+
+
+/** Filters applied to the decoded data */
+typedef struct APEFilter {
+ int16_t *coeffs; ///< actual coefficients used in filtering
+ int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients
+ int16_t *historybuffer; ///< filter memory
+ int16_t *delay; ///< filtered values
+
+ int avg;
+} APEFilter;
+
+typedef struct APERice {
+ uint32_t k;
+ uint32_t ksum;
+} APERice;
+
+typedef struct APERangecoder {
+ uint32_t low; ///< low end of interval
+ uint32_t range; ///< length of interval
+ uint32_t help; ///< bytes_to_follow resp. intermediate value
+ unsigned int buffer; ///< buffer for input/output
+} APERangecoder;
+
+/** Filter histories */
+typedef struct APEPredictor {
+ int32_t *buf;
+
+ int32_t lastA[2];
+
+ int32_t filterA[2];
+ int32_t filterB[2];
+
+ int32_t coeffsA[2][4]; ///< adaption coefficients
+ int32_t coeffsB[2][5]; ///< adaption coefficients
+ int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
+} APEPredictor;
+
+/** Decoder context */
+typedef struct APEContext {
+ AVClass *class; ///< class for AVOptions
+ AVCodecContext *avctx;
+ DSPContext dsp;
+ int channels;
+ int samples; ///< samples left to decode in current frame
+ int bps;
+
+ int fileversion; ///< codec version, very important in decoding process
+ int compression_level; ///< compression levels
+ int fset; ///< which filter set to use (calculated from compression level)
+ int flags; ///< global decoder flags
+
+ uint32_t CRC; ///< frame CRC
+ int frameflags; ///< frame flags
+ APEPredictor predictor; ///< predictor used for final reconstruction
+
+ int32_t *decoded_buffer;
+ int decoded_size;
+ int32_t *decoded[MAX_CHANNELS]; ///< decoded data for each channel
+ int blocks_per_loop; ///< maximum number of samples to decode for each call
+
+ int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory
+
+ APERangecoder rc; ///< rangecoder used to decode actual values
+ APERice riceX; ///< rice code parameters for the second channel
+ APERice riceY; ///< rice code parameters for the first channel
+ APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
+
+ uint8_t *data; ///< current frame data
+ uint8_t *data_end; ///< frame data end
+ int data_size; ///< frame data allocated size
+ const uint8_t *ptr; ///< current position in frame data
+
+ int error;
+
+ void (*entropy_decode_mono)(struct APEContext *ctx, int blockstodecode);
+ void (*entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode);
+ void (*predictor_decode_mono)(struct APEContext *ctx, int count);
+ void (*predictor_decode_stereo)(struct APEContext *ctx, int count);
+} APEContext;
+
+static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
+ int32_t *decoded1, int count);
+
+static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode);
+static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode);
+static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode);
+static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode);
+
+static void predictor_decode_mono_3930(APEContext *ctx, int count);
+static void predictor_decode_stereo_3930(APEContext *ctx, int count);
+static void predictor_decode_mono_3950(APEContext *ctx, int count);
+static void predictor_decode_stereo_3950(APEContext *ctx, int count);
+
+// TODO: dsputilize
+
+static av_cold int ape_decode_close(AVCodecContext *avctx)
+{
+ APEContext *s = avctx->priv_data;
+ int i;
+
+ for (i = 0; i < APE_FILTER_LEVELS; i++)
+ av_freep(&s->filterbuf[i]);
+
+ av_freep(&s->decoded_buffer);
+ av_freep(&s->data);
+ s->decoded_size = s->data_size = 0;
+
+ return 0;
+}
+
+static av_cold int ape_decode_init(AVCodecContext *avctx)
+{
+ APEContext *s = avctx->priv_data;
+ int i;
+
+ if (avctx->extradata_size != 6) {
+ av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
+ return AVERROR(EINVAL);
+ }
+ if (avctx->channels > 2) {
+ av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
+ return AVERROR(EINVAL);
+ }
+ s->bps = avctx->bits_per_coded_sample;
+ switch (s->bps) {
+ case 8:
+ avctx->sample_fmt = AV_SAMPLE_FMT_U8P;
+ break;
+ case 16:
+ avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
+ break;
+ case 24:
+ avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
+ break;
+ default:
+ avpriv_request_sample(avctx,
+ "%d bits per coded sample", s->bps);
+ return AVERROR_PATCHWELCOME;
+ }
+ s->avctx = avctx;
+ s->channels = avctx->channels;
+ s->fileversion = AV_RL16(avctx->extradata);
+ s->compression_level = AV_RL16(avctx->extradata + 2);
+ s->flags = AV_RL16(avctx->extradata + 4);
+
+ av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n",
+ s->compression_level, s->flags);
+ if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE || !s->compression_level) {
+ av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n",
+ s->compression_level);
+ return AVERROR_INVALIDDATA;
+ }
+ s->fset = s->compression_level / 1000 - 1;
+ for (i = 0; i < APE_FILTER_LEVELS; i++) {
+ if (!ape_filter_orders[s->fset][i])
+ break;
+ FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i],
+ (ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4,
+ filter_alloc_fail);
+ }
+
+ if (s->fileversion < 3990) {
+ s->entropy_decode_mono = entropy_decode_mono_3900;
+ s->entropy_decode_stereo = entropy_decode_stereo_3900;
+ } else {
+ s->entropy_decode_mono = entropy_decode_mono_3990;
+ s->entropy_decode_stereo = entropy_decode_stereo_3990;
+ }
+
+ if (s->fileversion < 3950) {
+ s->predictor_decode_mono = predictor_decode_mono_3930;
+ s->predictor_decode_stereo = predictor_decode_stereo_3930;
+ } else {
+ s->predictor_decode_mono = predictor_decode_mono_3950;
+ s->predictor_decode_stereo = predictor_decode_stereo_3950;
+ }
+
+ ff_dsputil_init(&s->dsp, avctx);
+ avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
+
+ return 0;
+filter_alloc_fail:
+ ape_decode_close(avctx);
+ return AVERROR(ENOMEM);
+}
+
+/**
+ * @name APE range decoding functions
+ * @{
+ */
+
+#define CODE_BITS 32
+#define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
+#define SHIFT_BITS (CODE_BITS - 9)
+#define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
+#define BOTTOM_VALUE (TOP_VALUE >> 8)
+
+/** Start the decoder */
+static inline void range_start_decoding(APEContext *ctx)
+{
+ ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
+ ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
+ ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
+}
+
+/** Perform normalization */
+static inline void range_dec_normalize(APEContext *ctx)
+{
+ while (ctx->rc.range <= BOTTOM_VALUE) {
+ ctx->rc.buffer <<= 8;
+ if(ctx->ptr < ctx->data_end) {
+ ctx->rc.buffer += *ctx->ptr;
+ ctx->ptr++;
+ } else {
+ ctx->error = 1;
+ }
+ ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
+ ctx->rc.range <<= 8;
+ }
+}
+
+/**
+ * Calculate culmulative frequency for next symbol. Does NO update!
+ * @param ctx decoder context
+ * @param tot_f is the total frequency or (code_value)1<<shift
+ * @return the culmulative frequency
+ */
+static inline int range_decode_culfreq(APEContext *ctx, int tot_f)
+{
+ range_dec_normalize(ctx);
+ ctx->rc.help = ctx->rc.range / tot_f;
+ return ctx->rc.low / ctx->rc.help;
+}
+
+/**
+ * Decode value with given size in bits
+ * @param ctx decoder context
+ * @param shift number of bits to decode
+ */
+static inline int range_decode_culshift(APEContext *ctx, int shift)
+{
+ range_dec_normalize(ctx);
+ ctx->rc.help = ctx->rc.range >> shift;
+ return ctx->rc.low / ctx->rc.help;
+}
+
+
+/**
+ * Update decoding state
+ * @param ctx decoder context
+ * @param sy_f the interval length (frequency of the symbol)
+ * @param lt_f the lower end (frequency sum of < symbols)
+ */
+static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
+{
+ ctx->rc.low -= ctx->rc.help * lt_f;
+ ctx->rc.range = ctx->rc.help * sy_f;
+}
+
+/** Decode n bits (n <= 16) without modelling */
+static inline int range_decode_bits(APEContext *ctx, int n)
+{
+ int sym = range_decode_culshift(ctx, n);
+ range_decode_update(ctx, 1, sym);
+ return sym;
+}
+
+
+#define MODEL_ELEMENTS 64
+
+/**
+ * Fixed probabilities for symbols in Monkey Audio version 3.97
+ */
+static const uint16_t counts_3970[22] = {
+ 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
+ 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
+ 65450, 65469, 65480, 65487, 65491, 65493,
+};
+
+/**
+ * Probability ranges for symbols in Monkey Audio version 3.97
+ */
+static const uint16_t counts_diff_3970[21] = {
+ 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
+ 1104, 677, 415, 248, 150, 89, 54, 31,
+ 19, 11, 7, 4, 2,
+};
+
+/**
+ * Fixed probabilities for symbols in Monkey Audio version 3.98
+ */
+static const uint16_t counts_3980[22] = {
+ 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
+ 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
+ 65485, 65488, 65490, 65491, 65492, 65493,
+};
+
+/**
+ * Probability ranges for symbols in Monkey Audio version 3.98
+ */
+static const uint16_t counts_diff_3980[21] = {
+ 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
+ 261, 119, 65, 31, 19, 10, 6, 3,
+ 3, 2, 1, 1, 1,
+};
+
+/**
+ * Decode symbol
+ * @param ctx decoder context
+ * @param counts probability range start position
+ * @param counts_diff probability range widths
+ */
+static inline int range_get_symbol(APEContext *ctx,
+ const uint16_t counts[],
+ const uint16_t counts_diff[])
+{
+ int symbol, cf;
+
+ cf = range_decode_culshift(ctx, 16);
+
+ if(cf > 65492){
+ symbol= cf - 65535 + 63;
+ range_decode_update(ctx, 1, cf);
+ if(cf > 65535)
+ ctx->error=1;
+ return symbol;
+ }
+ /* figure out the symbol inefficiently; a binary search would be much better */
+ for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
+
+ range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
+
+ return symbol;
+}
+/** @} */ // group rangecoder
+
+static inline void update_rice(APERice *rice, unsigned int x)
+{
+ int lim = rice->k ? (1 << (rice->k + 4)) : 0;
+ rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
+
+ if (rice->ksum < lim)
+ rice->k--;
+ else if (rice->ksum >= (1 << (rice->k + 5)))
+ rice->k++;
+}
+
+static inline int ape_decode_value_3900(APEContext *ctx, APERice *rice)
+{
+ unsigned int x, overflow;
+ int tmpk;
+
+ overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
+
+ if (overflow == (MODEL_ELEMENTS - 1)) {
+ tmpk = range_decode_bits(ctx, 5);
+ overflow = 0;
+ } else
+ tmpk = (rice->k < 1) ? 0 : rice->k - 1;
+
+ if (tmpk <= 16)
+ x = range_decode_bits(ctx, tmpk);
+ else if (tmpk <= 32) {
+ x = range_decode_bits(ctx, 16);
+ x |= (range_decode_bits(ctx, tmpk - 16) << 16);
+ } else {
+ av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
+ return AVERROR_INVALIDDATA;
+ }
+ x += overflow << tmpk;
+
+ update_rice(rice, x);
+
+ /* Convert to signed */
+ if (x & 1)
+ return (x >> 1) + 1;
+ else
+ return -(x >> 1);
+}
+
+static inline int ape_decode_value_3990(APEContext *ctx, APERice *rice)
+{
+ unsigned int x, overflow;
+ int base, pivot;
+
+ pivot = rice->ksum >> 5;
+ if (pivot == 0)
+ pivot = 1;
+
+ overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
+
+ if (overflow == (MODEL_ELEMENTS - 1)) {
+ overflow = range_decode_bits(ctx, 16) << 16;
+ overflow |= range_decode_bits(ctx, 16);
+ }
+
+ if (pivot < 0x10000) {
+ base = range_decode_culfreq(ctx, pivot);
+ range_decode_update(ctx, 1, base);
+ } else {
+ int base_hi = pivot, base_lo;
+ int bbits = 0;
+
+ while (base_hi & ~0xFFFF) {
+ base_hi >>= 1;
+ bbits++;
+ }
+ base_hi = range_decode_culfreq(ctx, base_hi + 1);
+ range_decode_update(ctx, 1, base_hi);
+ base_lo = range_decode_culfreq(ctx, 1 << bbits);
+ range_decode_update(ctx, 1, base_lo);
+
+ base = (base_hi << bbits) + base_lo;
+ }
+
+ x = base + overflow * pivot;
+
+ update_rice(rice, x);
+
+ /* Convert to signed */
+ if (x & 1)
+ return (x >> 1) + 1;
+ else
+ return -(x >> 1);
+}
+
+static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
+{
+ int32_t *decoded0 = ctx->decoded[0];
+
+ while (blockstodecode--)
+ *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
+}
+
+static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
+{
+ int32_t *decoded0 = ctx->decoded[0];
+ int32_t *decoded1 = ctx->decoded[1];
+
+ while (blockstodecode--) {
+ *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
+ *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX);
+ }
+}
+
+static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
+{
+ int32_t *decoded0 = ctx->decoded[0];
+
+ while (blockstodecode--)
+ *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY);
+}
+
+static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
+{
+ int32_t *decoded0 = ctx->decoded[0];
+ int32_t *decoded1 = ctx->decoded[1];
+
+ while (blockstodecode--) {
+ *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY);
+ *decoded1++ = ape_decode_value_3990(ctx, &ctx->riceX);
+ }
+}
+
+static int init_entropy_decoder(APEContext *ctx)
+{
+ /* Read the CRC */
+ if (ctx->data_end - ctx->ptr < 6)
+ return AVERROR_INVALIDDATA;
+ ctx->CRC = bytestream_get_be32(&ctx->ptr);
+
+ /* Read the frame flags if they exist */
+ ctx->frameflags = 0;
+ if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
+ ctx->CRC &= ~0x80000000;
+
+ if (ctx->data_end - ctx->ptr < 6)
+ return AVERROR_INVALIDDATA;
+ ctx->frameflags = bytestream_get_be32(&ctx->ptr);
+ }
+
+ /* Initialize the rice structs */
+ ctx->riceX.k = 10;
+ ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
+ ctx->riceY.k = 10;
+ ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
+
+ /* The first 8 bits of input are ignored. */
+ ctx->ptr++;
+
+ range_start_decoding(ctx);
+
+ return 0;
+}
+
+static const int32_t initial_coeffs[4] = {
+ 360, 317, -109, 98
+};
+
+static void init_predictor_decoder(APEContext *ctx)
+{
+ APEPredictor *p = &ctx->predictor;
+
+ /* Zero the history buffers */
+ memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p->historybuffer));
+ p->buf = p->historybuffer;
+
+ /* Initialize and zero the coefficients */
+ memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
+ memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
+ memset(p->coeffsB, 0, sizeof(p->coeffsB));
+
+ p->filterA[0] = p->filterA[1] = 0;
+ p->filterB[0] = p->filterB[1] = 0;
+ p->lastA[0] = p->lastA[1] = 0;
+}
+
+/** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
+static inline int APESIGN(int32_t x) {
+ return (x < 0) - (x > 0);
+}
+
+static av_always_inline int predictor_update_3930(APEPredictor *p,
+ const int decoded, const int filter,
+ const int delayA)
+{
+ int32_t predictionA, sign;
+ int32_t d0, d1, d2, d3;
+
+ p->buf[delayA] = p->lastA[filter];
+ d0 = p->buf[delayA ];
+ d1 = p->buf[delayA ] - p->buf[delayA - 1];
+ d2 = p->buf[delayA - 1] - p->buf[delayA - 2];
+ d3 = p->buf[delayA - 2] - p->buf[delayA - 3];
+
+ predictionA = d0 * p->coeffsA[filter][0] +
+ d1 * p->coeffsA[filter][1] +
+ d2 * p->coeffsA[filter][2] +
+ d3 * p->coeffsA[filter][3];
+
+ p->lastA[filter] = decoded + (predictionA >> 9);
+ p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
+
+ sign = APESIGN(decoded);
+ p->coeffsA[filter][0] += ((d0 < 0) * 2 - 1) * sign;
+ p->coeffsA[filter][1] += ((d1 < 0) * 2 - 1) * sign;
+ p->coeffsA[filter][2] += ((d2 < 0) * 2 - 1) * sign;
+ p->coeffsA[filter][3] += ((d3 < 0) * 2 - 1) * sign;
+
+ return p->filterA[filter];
+}
+
+static void predictor_decode_stereo_3930(APEContext *ctx, int count)
+{
+ APEPredictor *p = &ctx->predictor;
+ int32_t *decoded0 = ctx->decoded[0];
+ int32_t *decoded1 = ctx->decoded[1];
+
+ ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count);
+
+ while (count--) {
+ /* Predictor Y */
+ int Y = *decoded1, X = *decoded0;
+ *decoded0 = predictor_update_3930(p, Y, 0, YDELAYA);
+ decoded0++;
+ *decoded1 = predictor_update_3930(p, X, 1, XDELAYA);
+ decoded1++;
+
+ /* Combined */
+ p->buf++;
+
+ /* Have we filled the history buffer? */
+ if (p->buf == p->historybuffer + HISTORY_SIZE) {
+ memmove(p->historybuffer, p->buf,
+ PREDICTOR_SIZE * sizeof(*p->historybuffer));
+ p->buf = p->historybuffer;
+ }
+ }
+}
+
+static void predictor_decode_mono_3930(APEContext *ctx, int count)
+{
+ APEPredictor *p = &ctx->predictor;
+ int32_t *decoded0 = ctx->decoded[0];
+
+ ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
+
+ while (count--) {
+ *decoded0 = predictor_update_3930(p, *decoded0, 0, YDELAYA);
+ decoded0++;
+
+ p->buf++;
+
+ /* Have we filled the history buffer? */
+ if (p->buf == p->historybuffer + HISTORY_SIZE) {
+ memmove(p->historybuffer, p->buf,
+ PREDICTOR_SIZE * sizeof(*p->historybuffer));
+ p->buf = p->historybuffer;
+ }
+ }
+}
+
+static av_always_inline int predictor_update_filter(APEPredictor *p,
+ const int decoded, const int filter,
+ const int delayA, const int delayB,
+ const int adaptA, const int adaptB)
+{
+ int32_t predictionA, predictionB, sign;
+
+ p->buf[delayA] = p->lastA[filter];
+ p->buf[adaptA] = APESIGN(p->buf[delayA]);
+ p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
+ p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
+
+ predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
+ p->buf[delayA - 1] * p->coeffsA[filter][1] +
+ p->buf[delayA - 2] * p->coeffsA[filter][2] +
+ p->buf[delayA - 3] * p->coeffsA[filter][3];
+
+ /* Apply a scaled first-order filter compression */
+ p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
+ p->buf[adaptB] = APESIGN(p->buf[delayB]);
+ p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
+ p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
+ p->filterB[filter] = p->filterA[filter ^ 1];
+
+ predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
+ p->buf[delayB - 1] * p->coeffsB[filter][1] +
+ p->buf[delayB - 2] * p->coeffsB[filter][2] +
+ p->buf[delayB - 3] * p->coeffsB[filter][3] +
+ p->buf[delayB - 4] * p->coeffsB[filter][4];
+
+ p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
+ p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
+
+ sign = APESIGN(decoded);
+ p->coeffsA[filter][0] += p->buf[adaptA ] * sign;
+ p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
+ p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
+ p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
+ p->coeffsB[filter][0] += p->buf[adaptB ] * sign;
+ p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
+ p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
+ p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
+ p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
+
+ return p->filterA[filter];
+}
+
+static void predictor_decode_stereo_3950(APEContext *ctx, int count)
+{
+ APEPredictor *p = &ctx->predictor;
+ int32_t *decoded0 = ctx->decoded[0];
+ int32_t *decoded1 = ctx->decoded[1];
+
+ ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count);
+
+ while (count--) {
+ /* Predictor Y */
+ *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB,
+ YADAPTCOEFFSA, YADAPTCOEFFSB);
+ decoded0++;
+ *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB,
+ XADAPTCOEFFSA, XADAPTCOEFFSB);
+ decoded1++;
+
+ /* Combined */
+ p->buf++;
+
+ /* Have we filled the history buffer? */
+ if (p->buf == p->historybuffer + HISTORY_SIZE) {
+ memmove(p->historybuffer, p->buf,
+ PREDICTOR_SIZE * sizeof(*p->historybuffer));
+ p->buf = p->historybuffer;
+ }
+ }
+}
+
+static void predictor_decode_mono_3950(APEContext *ctx, int count)
+{
+ APEPredictor *p = &ctx->predictor;
+ int32_t *decoded0 = ctx->decoded[0];
+ int32_t predictionA, currentA, A, sign;
+
+ ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
+
+ currentA = p->lastA[0];
+
+ while (count--) {
+ A = *decoded0;
+
+ p->buf[YDELAYA] = currentA;
+ p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
+
+ predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
+ p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
+ p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
+ p->buf[YDELAYA - 3] * p->coeffsA[0][3];
+
+ currentA = A + (predictionA >> 10);
+
+ p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
+ p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
+
+ sign = APESIGN(A);
+ p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign;
+ p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
+ p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
+ p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
+
+ p->buf++;
+
+ /* Have we filled the history buffer? */
+ if (p->buf == p->historybuffer + HISTORY_SIZE) {
+ memmove(p->historybuffer, p->buf,
+ PREDICTOR_SIZE * sizeof(*p->historybuffer));
+ p->buf = p->historybuffer;
+ }
+
+ p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
+ *(decoded0++) = p->filterA[0];
+ }
+
+ p->lastA[0] = currentA;
+}
+
+static void do_init_filter(APEFilter *f, int16_t *buf, int order)
+{
+ f->coeffs = buf;
+ f->historybuffer = buf + order;
+ f->delay = f->historybuffer + order * 2;
+ f->adaptcoeffs = f->historybuffer + order;
+
+ memset(f->historybuffer, 0, (order * 2) * sizeof(*f->historybuffer));
+ memset(f->coeffs, 0, order * sizeof(*f->coeffs));
+ f->avg = 0;
+}
+
+static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
+{
+ do_init_filter(&f[0], buf, order);
+ do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
+}
+
+static void do_apply_filter(APEContext *ctx, int version, APEFilter *f,
+ int32_t *data, int count, int order, int fracbits)
+{
+ int res;
+ int absres;
+
+ while (count--) {
+ /* round fixedpoint scalar product */
+ res = ctx->dsp.scalarproduct_and_madd_int16(f->coeffs, f->delay - order,
+ f->adaptcoeffs - order,
+ order, APESIGN(*data));
+ res = (res + (1 << (fracbits - 1))) >> fracbits;
+ res += *data;
+ *data++ = res;
+
+ /* Update the output history */
+ *f->delay++ = av_clip_int16(res);
+
+ if (version < 3980) {
+ /* Version ??? to < 3.98 files (untested) */
+ f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
+ f->adaptcoeffs[-4] >>= 1;
+ f->adaptcoeffs[-8] >>= 1;
+ } else {
+ /* Version 3.98 and later files */
+
+ /* Update the adaption coefficients */
+ absres = FFABS(res);
+ if (absres)
+ *f->adaptcoeffs = ((res & (-1<<31)) ^ (-1<<30)) >>
+ (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3));
+ else
+ *f->adaptcoeffs = 0;
+
+ f->avg += (absres - f->avg) / 16;
+
+ f->adaptcoeffs[-1] >>= 1;
+ f->adaptcoeffs[-2] >>= 1;
+ f->adaptcoeffs[-8] >>= 1;
+ }
+
+ f->adaptcoeffs++;
+
+ /* Have we filled the history buffer? */
+ if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
+ memmove(f->historybuffer, f->delay - (order * 2),
+ (order * 2) * sizeof(*f->historybuffer));
+ f->delay = f->historybuffer + order * 2;
+ f->adaptcoeffs = f->historybuffer + order;
+ }
+ }
+}
+
+static void apply_filter(APEContext *ctx, APEFilter *f,
+ int32_t *data0, int32_t *data1,
+ int count, int order, int fracbits)
+{
+ do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
+ if (data1)
+ do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
+}
+
+static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
+ int32_t *decoded1, int count)
+{
+ int i;
+
+ for (i = 0; i < APE_FILTER_LEVELS; i++) {
+ if (!ape_filter_orders[ctx->fset][i])
+ break;
+ apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count,
+ ape_filter_orders[ctx->fset][i],
+ ape_filter_fracbits[ctx->fset][i]);
+ }
+}
+
+static int init_frame_decoder(APEContext *ctx)
+{
+ int i, ret;
+ if ((ret = init_entropy_decoder(ctx)) < 0)
+ return ret;
+ init_predictor_decoder(ctx);
+
+ for (i = 0; i < APE_FILTER_LEVELS; i++) {
+ if (!ape_filter_orders[ctx->fset][i])
+ break;
+ init_filter(ctx, ctx->filters[i], ctx->filterbuf[i],
+ ape_filter_orders[ctx->fset][i]);
+ }
+ return 0;
+}
+
+static void ape_unpack_mono(APEContext *ctx, int count)
+{
+ if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
+ /* We are pure silence, so we're done. */
+ av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
+ return;
+ }
+
+ ctx->entropy_decode_mono(ctx, count);
+
+ /* Now apply the predictor decoding */
+ ctx->predictor_decode_mono(ctx, count);
+
+ /* Pseudo-stereo - just copy left channel to right channel */
+ if (ctx->channels == 2) {
+ memcpy(ctx->decoded[1], ctx->decoded[0], count * sizeof(*ctx->decoded[1]));
+ }
+}
+
+static void ape_unpack_stereo(APEContext *ctx, int count)
+{
+ int32_t left, right;
+ int32_t *decoded0 = ctx->decoded[0];
+ int32_t *decoded1 = ctx->decoded[1];
+
+ if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
+ /* We are pure silence, so we're done. */
+ av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
+ return;
+ }
+
+ ctx->entropy_decode_stereo(ctx, count);
+
+ /* Now apply the predictor decoding */
+ ctx->predictor_decode_stereo(ctx, count);
+
+ /* Decorrelate and scale to output depth */
+ while (count--) {
+ left = *decoded1 - (*decoded0 / 2);
+ right = left + *decoded0;
+
+ *(decoded0++) = left;
+ *(decoded1++) = right;
+ }
+}
+
+static int ape_decode_frame(AVCodecContext *avctx, void *data,
+ int *got_frame_ptr, AVPacket *avpkt)
+{
+ AVFrame *frame = data;
+ const uint8_t *buf = avpkt->data;
+ APEContext *s = avctx->priv_data;
+ uint8_t *sample8;
+ int16_t *sample16;
+ int32_t *sample24;
+ int i, ch, ret;
+ int blockstodecode;
+
+ /* this should never be negative, but bad things will happen if it is, so
+ check it just to make sure. */
+ av_assert0(s->samples >= 0);
+
+ if(!s->samples){
+ uint32_t nblocks, offset;
+ int buf_size;
+
+ if (!avpkt->size) {
+ *got_frame_ptr = 0;
+ return 0;
+ }
+ if (avpkt->size < 8) {
+ av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
+ return AVERROR_INVALIDDATA;
+ }
+ buf_size = avpkt->size & ~3;
+ if (buf_size != avpkt->size) {
+ av_log(avctx, AV_LOG_WARNING, "packet size is not a multiple of 4. "
+ "extra bytes at the end will be skipped.\n");
+ }
+ if (s->fileversion < 3950) // previous versions overread two bytes
+ buf_size += 2;
+ av_fast_malloc(&s->data, &s->data_size, buf_size);
+ if (!s->data)
+ return AVERROR(ENOMEM);
+ s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
+ memset(s->data + (buf_size & ~3), 0, buf_size & 3);
+ s->ptr = s->data;
+ s->data_end = s->data + buf_size;
+
+ nblocks = bytestream_get_be32(&s->ptr);
+ offset = bytestream_get_be32(&s->ptr);
+ if (offset > 3) {
+ av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
+ s->data = NULL;
+ return AVERROR_INVALIDDATA;
+ }
+ if (s->data_end - s->ptr < offset) {
+ av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
+ return AVERROR_INVALIDDATA;
+ }
+ s->ptr += offset;
+
+ if (!nblocks || nblocks > INT_MAX) {
+ av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %u.\n", nblocks);
+ return AVERROR_INVALIDDATA;
+ }
+ s->samples = nblocks;
+
+ /* Initialize the frame decoder */
+ if (init_frame_decoder(s) < 0) {
+ av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n");
+ return AVERROR_INVALIDDATA;
+ }
+ }
+
+ if (!s->data) {
+ *got_frame_ptr = 0;
+ return avpkt->size;
+ }
+
+ blockstodecode = FFMIN(s->blocks_per_loop, s->samples);
+
+ /* reallocate decoded sample buffer if needed */
+ av_fast_malloc(&s->decoded_buffer, &s->decoded_size,
+ 2 * FFALIGN(blockstodecode, 8) * sizeof(*s->decoded_buffer));
+ if (!s->decoded_buffer)
+ return AVERROR(ENOMEM);
+ memset(s->decoded_buffer, 0, s->decoded_size);
+ s->decoded[0] = s->decoded_buffer;
+ s->decoded[1] = s->decoded_buffer + FFALIGN(blockstodecode, 8);
+
+ /* get output buffer */
+ frame->nb_samples = blockstodecode;
+ if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
+ return ret;
+
+ s->error=0;
+
+ if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
+ ape_unpack_mono(s, blockstodecode);
+ else
+ ape_unpack_stereo(s, blockstodecode);
+ emms_c();
+
+ if (s->error) {
+ s->samples=0;
+ av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ switch (s->bps) {
+ case 8:
+ for (ch = 0; ch < s->channels; ch++) {
+ sample8 = (uint8_t *)frame->data[ch];
+ for (i = 0; i < blockstodecode; i++)
+ *sample8++ = (s->decoded[ch][i] + 0x80) & 0xff;
+ }
+ break;
+ case 16:
+ for (ch = 0; ch < s->channels; ch++) {
+ sample16 = (int16_t *)frame->data[ch];
+ for (i = 0; i < blockstodecode; i++)
+ *sample16++ = s->decoded[ch][i];
+ }
+ break;
+ case 24:
+ for (ch = 0; ch < s->channels; ch++) {
+ sample24 = (int32_t *)frame->data[ch];
+ for (i = 0; i < blockstodecode; i++)
+ *sample24++ = s->decoded[ch][i] << 8;
+ }
+ break;
+ }
+
+ s->samples -= blockstodecode;
+
+ *got_frame_ptr = 1;
+
+ return !s->samples ? avpkt->size : 0;
+}
+
+static void ape_flush(AVCodecContext *avctx)
+{
+ APEContext *s = avctx->priv_data;
+ s->samples= 0;
+}
+
+#define OFFSET(x) offsetof(APEContext, x)
+#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
+static const AVOption options[] = {
+ { "max_samples", "maximum number of samples decoded per call", OFFSET(blocks_per_loop), AV_OPT_TYPE_INT, { .i64 = 4608 }, 1, INT_MAX, PAR, "max_samples" },
+ { "all", "no maximum. decode all samples for each packet at once", 0, AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX, PAR, "max_samples" },
+ { NULL},
+};
+
+static const AVClass ape_decoder_class = {
+ .class_name = "APE decoder",
+ .item_name = av_default_item_name,
+ .option = options,
+ .version = LIBAVUTIL_VERSION_INT,
+};
+
+AVCodec ff_ape_decoder = {
+ .name = "ape",
+ .type = AVMEDIA_TYPE_AUDIO,
+ .id = AV_CODEC_ID_APE,
+ .priv_data_size = sizeof(APEContext),
+ .init = ape_decode_init,
+ .close = ape_decode_close,
+ .decode = ape_decode_frame,
+ .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DELAY | CODEC_CAP_DR1,
+ .flush = ape_flush,
+ .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
+ .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P,
+ AV_SAMPLE_FMT_S16P,
+ AV_SAMPLE_FMT_S32P,
+ AV_SAMPLE_FMT_NONE },
+ .priv_class = &ape_decoder_class,
+};