diff options
Diffstat (limited to 'ffmpeg/libavcodec/lpc.c')
| -rw-r--r-- | ffmpeg/libavcodec/lpc.c | 287 |
1 files changed, 287 insertions, 0 deletions
diff --git a/ffmpeg/libavcodec/lpc.c b/ffmpeg/libavcodec/lpc.c new file mode 100644 index 0000000..4149135 --- /dev/null +++ b/ffmpeg/libavcodec/lpc.c @@ -0,0 +1,287 @@ +/* + * LPC utility code + * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com> + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "libavutil/common.h" +#include "libavutil/lls.h" + +#define LPC_USE_DOUBLE +#include "lpc.h" +#include "libavutil/avassert.h" + + +/** + * Apply Welch window function to audio block + */ +static void lpc_apply_welch_window_c(const int32_t *data, int len, + double *w_data) +{ + int i, n2; + double w; + double c; + + /* The optimization in commit fa4ed8c does not support odd len. + * If someone wants odd len extend that change. */ + av_assert2(!(len & 1)); + + n2 = (len >> 1); + c = 2.0 / (len - 1.0); + + w_data+=n2; + data+=n2; + for(i=0; i<n2; i++) { + w = c - n2 + i; + w = 1.0 - (w * w); + w_data[-i-1] = data[-i-1] * w; + w_data[+i ] = data[+i ] * w; + } +} + +/** + * Calculate autocorrelation data from audio samples + * A Welch window function is applied before calculation. + */ +static void lpc_compute_autocorr_c(const double *data, int len, int lag, + double *autoc) +{ + int i, j; + + for(j=0; j<lag; j+=2){ + double sum0 = 1.0, sum1 = 1.0; + for(i=j; i<len; i++){ + sum0 += data[i] * data[i-j]; + sum1 += data[i] * data[i-j-1]; + } + autoc[j ] = sum0; + autoc[j+1] = sum1; + } + + if(j==lag){ + double sum = 1.0; + for(i=j-1; i<len; i+=2){ + sum += data[i ] * data[i-j ] + + data[i+1] * data[i-j+1]; + } + autoc[j] = sum; + } +} + +/** + * Quantize LPC coefficients + */ +static void quantize_lpc_coefs(double *lpc_in, int order, int precision, + int32_t *lpc_out, int *shift, int max_shift, int zero_shift) +{ + int i; + double cmax, error; + int32_t qmax; + int sh; + + /* define maximum levels */ + qmax = (1 << (precision - 1)) - 1; + + /* find maximum coefficient value */ + cmax = 0.0; + for(i=0; i<order; i++) { + cmax= FFMAX(cmax, fabs(lpc_in[i])); + } + + /* if maximum value quantizes to zero, return all zeros */ + if(cmax * (1 << max_shift) < 1.0) { + *shift = zero_shift; + memset(lpc_out, 0, sizeof(int32_t) * order); + return; + } + + /* calculate level shift which scales max coeff to available bits */ + sh = max_shift; + while((cmax * (1 << sh) > qmax) && (sh > 0)) { + sh--; + } + + /* since negative shift values are unsupported in decoder, scale down + coefficients instead */ + if(sh == 0 && cmax > qmax) { + double scale = ((double)qmax) / cmax; + for(i=0; i<order; i++) { + lpc_in[i] *= scale; + } + } + + /* output quantized coefficients and level shift */ + error=0; + for(i=0; i<order; i++) { + error -= lpc_in[i] * (1 << sh); + lpc_out[i] = av_clip(lrintf(error), -qmax, qmax); + error -= lpc_out[i]; + } + *shift = sh; +} + +static int estimate_best_order(double *ref, int min_order, int max_order) +{ + int i, est; + + est = min_order; + for(i=max_order-1; i>=min_order-1; i--) { + if(ref[i] > 0.10) { + est = i+1; + break; + } + } + return est; +} + +int ff_lpc_calc_ref_coefs(LPCContext *s, + const int32_t *samples, int order, double *ref) +{ + double autoc[MAX_LPC_ORDER + 1]; + + s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples); + s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc); + compute_ref_coefs(autoc, order, ref, NULL); + + return order; +} + +/** + * Calculate LPC coefficients for multiple orders + * + * @param lpc_type LPC method for determining coefficients, + * see #FFLPCType for details + */ +int ff_lpc_calc_coefs(LPCContext *s, + const int32_t *samples, int blocksize, int min_order, + int max_order, int precision, + int32_t coefs[][MAX_LPC_ORDER], int *shift, + enum FFLPCType lpc_type, int lpc_passes, + int omethod, int max_shift, int zero_shift) +{ + double autoc[MAX_LPC_ORDER+1]; + double ref[MAX_LPC_ORDER]; + double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER]; + int i, j, pass; + int opt_order; + + av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && + lpc_type > FF_LPC_TYPE_FIXED); + + /* reinit LPC context if parameters have changed */ + if (blocksize != s->blocksize || max_order != s->max_order || + lpc_type != s->lpc_type) { + ff_lpc_end(s); + ff_lpc_init(s, blocksize, max_order, lpc_type); + } + + if (lpc_type == FF_LPC_TYPE_LEVINSON) { + s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples); + + s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc); + + compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1); + + for(i=0; i<max_order; i++) + ref[i] = fabs(lpc[i][i]); + } else if (lpc_type == FF_LPC_TYPE_CHOLESKY) { + LLSModel m[2]; + double var[MAX_LPC_ORDER+1], av_uninit(weight); + + if(lpc_passes <= 0) + lpc_passes = 2; + + for(pass=0; pass<lpc_passes; pass++){ + avpriv_init_lls(&m[pass&1], max_order); + + weight=0; + for(i=max_order; i<blocksize; i++){ + for(j=0; j<=max_order; j++) + var[j]= samples[i-j]; + + if(pass){ + double eval, inv, rinv; + eval= avpriv_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1); + eval= (512>>pass) + fabs(eval - var[0]); + inv = 1/eval; + rinv = sqrt(inv); + for(j=0; j<=max_order; j++) + var[j] *= rinv; + weight += inv; + }else + weight++; + + avpriv_update_lls(&m[pass&1], var, 1.0); + } + avpriv_solve_lls(&m[pass&1], 0.001, 0); + } + + for(i=0; i<max_order; i++){ + for(j=0; j<max_order; j++) + lpc[i][j]=-m[(pass-1)&1].coeff[i][j]; + ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000; + } + for(i=max_order-1; i>0; i--) + ref[i] = ref[i-1] - ref[i]; + } else + av_assert0(0); + opt_order = max_order; + + if(omethod == ORDER_METHOD_EST) { + opt_order = estimate_best_order(ref, min_order, max_order); + i = opt_order-1; + quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift); + } else { + for(i=min_order-1; i<max_order; i++) { + quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift); + } + } + + return opt_order; +} + +av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, + enum FFLPCType lpc_type) +{ + s->blocksize = blocksize; + s->max_order = max_order; + s->lpc_type = lpc_type; + + if (lpc_type == FF_LPC_TYPE_LEVINSON) { + s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) * + sizeof(*s->windowed_samples)); + if (!s->windowed_buffer) + return AVERROR(ENOMEM); + s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4); + } else { + s->windowed_samples = NULL; + } + + s->lpc_apply_welch_window = lpc_apply_welch_window_c; + s->lpc_compute_autocorr = lpc_compute_autocorr_c; + + if (ARCH_X86) + ff_lpc_init_x86(s); + + return 0; +} + +av_cold void ff_lpc_end(LPCContext *s) +{ + av_freep(&s->windowed_buffer); +} |
