1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
#include "cvimage.h"
using namespace std;
namespace Rotor {
Image & Image::operator+=(const Image &other) {
if (other.w!=w||other.h!=h) {
cerr<<"Rotor: cannot add images with different sizes! (wanted "<<w<<"x"<<h<<", got "<<other.w<<"x"<<other.h<<")"<<endl;
}
else {
rgb+=other.rgb;
}
return *this;
}
Image & Image::operator*=(const Image &other) {
if (other.w!=w||other.h!=h) {
cerr<<"Rotor: cannot multiply images with different sizes! (wanted "<<w<<"x"<<h<<", got "<<other.w<<"x"<<other.h<<")"<<endl;
}
else {
rgb/=other.rgb; //counter intuitive!
}
return *this;
}
Image & Image::add_wrap(const Image &other) {
if (other.w!=w||other.h!=h) {
cerr<<"Rotor: cannot add images with different sizes! (wanted "<<w<<"x"<<h<<", got "<<other.w<<"x"<<other.h<<")"<<endl;
}
else {
for (int i=0;i<w*h*3;i++){
//creates rainbow overload, openCV doesn't do this
RGBdata[i]=(unsigned char)(((int)other.RGBdata[i]+(int)RGBdata[i]));
}
}
return *this;
}
//THESE CAN BE OPTIMISED - LOOK INTO USING OPENCV HERE
Image & Image::alpha_blend(const Image &other) {
if (other.w!=w||other.h!=h) {
cerr<<"Rotor: cannot blend images with different sizes! (wanted "<<w<<"x"<<h<<", got "<<other.w<<"x"<<other.h<<")"<<endl;
//why not??
}
else if (!other.alpha.data){
//default to full on alpha
rgb=other.rgb.clone();
}
else {
//overlay the other image based on its alpha values
//https://gist.github.com/Brick85/5009046 - this is a dumb way to do it?
//how to invert a matrix?
//'invert' is matrix invert - different
//subtract from a scalar (1) ?
//vector<cv::Mat> ichans,ochans;
//vector<cv::Mat> compchans;
//cv::split(rgb,ichans);
//cv::split(other.rgb,ochans);
//uint8_t b=0xFF;
//cv::Mat iA=b-other.alpha;
//cv::Mat iA=cv::Mat(h,w,CV_8UC1);
//for (int i=0;i<w*h;i++) iA.data[i]=(uint8_t)0xFF-other.alpha.data[i];
//for (int i=0;i<3;i++) {
// compchans.push_back((ichans[i]/iA)+(ochans[i]/other.alpha)); //.mul(iA,1.0/255.0)); //+ochans[i].mul(other.alpha));
//}
//merge(compchans,rgb);
//rgb+=other.rgb;
for (int i=0;i<w*h*3;i++) {
rgb.data[i]=(uint8_t)(((((int)rgb.data[i])*(0xFF-other.alpha.data[i/3]))>>8)+((((int)other.rgb.data[i])*((int)other.alpha.data[i/3]))>>8));
}
}
return *this;
}
Image & Image::alpha_merge(const Image &other) {
//converts the incoming image to monochrome and inserts it into the alpha channel of this image
if (other.w!=w||other.h!=h) {
cerr<<"Rotor: cannot merge alpha with different size! (wanted "<<w<<"x"<<h<<", got "<<other.w<<"x"<<other.h<<")"<<endl;
}
else {
alpha=cv::Mat(h,w,CV_8UC1);
//cv::cvtColor(other.rgb,alpha,CV_RGB2GRAY);
for (int i=0;i<w*h;i++) {
uint8_t v=0;
for (int j=0;j<3;j++){
v+=pixels.mono_weights[j][other.rgb.data[i*3+j]];
}
alpha.data[i]=v;
}
}
return *this;
}
//channel rearrangement
//RGBAZ - these are channels 0-4
//HSB - can also have these virtual channels 5-7
//convert channels- int outChannel[5] - {0,1,2,-5,4} - this mapping sends inverted brightness to alpha
//scalar operations allocate a new image.
//maybe this could not be the case if the data is owned by this image?
//need to look into auto_ptr
Image & Image::operator*=(const float &amount) {
rgb*=amount;
return *this;
}
Image * Image::operator*(const float &amount) {
Image *other=new Image(w,h);
other->rgb=rgb*amount;
return other;
}
Image * Image::operator+(const float &amount) {
uint8_t amt=(uint8_t)(amount*255.0f);
Image *other=new Image(w,h);
other->rgb=rgb+amt;
return other;
}
Image * Image::operator-(const float &amount) {
uint8_t amt=(uint8_t)(amount*255.0f);
Image *other=new Image(w,h);
other->rgb=rgb-amt;
return other;
}
Image * Image::operator/(const float &amount) {
Image *other=new Image(w,h);
other->rgb=rgb/amount;
return other;
}
}
|