summaryrefslogtreecommitdiff
path: root/rotord/src/nodes_audio_analysis.cpp
blob: 1890b8c3fe6b62d48929fd34abe9a408d9b1161a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#include "nodes_audio_analysis.h"

namespace Rotor{
	bool Audio_thumbnailer::init(int _channels,int _bits,int _samples,int _rate) {
		//base_audio_processor::init(_channels,_bits,_samples);
		channels=_channels;
		bits=_bits;
		samples=_samples;
		samples_per_column=samples/width;
		offset=0x1<<(bits-1); //signed audio
		scale=1.0/offset;

		out_sample=0; //sample in whole track
		sample=0;
		samples=0;
		accum=0.0;
		return true;
	}
	int Audio_thumbnailer::process_frame(uint8_t *_data,int samples_in_frame){
		//begin by processing remaining samples
		//samples per column could be larger than a frame! (probably is)
		//but all we are doing is averaging
		int bytes=(bits>>3);
		int stride=channels*bytes;
		int in_sample=0;
		while (in_sample<samples_in_frame) {
			//continue the column
			while (sample<samples_per_column&&in_sample<samples_in_frame) {
				//accumulate samples for this column until we run out of samples
				for (int i=0;i<channels;i++) {
					unsigned int this_val=0;
					for (int j=0;j<bytes;j++) {
						this_val+=_data[(in_sample*stride)+(i*bytes)+j]<<(j*8);
					}
					//convert from integer data format - i.e s16p - to audio signal in -1..1 range
					//presume 16 bits for now...
					double val=((double)((int16_t)this_val))*scale;
					accum+=val*val;
					samples++;
				}
				in_sample++;
				sample++;
				out_sample++;
			}
			if (sample==samples_per_column) { //finished a column
				//get root-mean
				//why does valgrind complain here about uninitialised vars
				double mean=pow(accum/samples,0.5f);
				audiodata.push_back(mean);
				sample=0;
				samples=0;
				accum=0.0;
			}
		}
		return out_sample;
	}
	void Audio_thumbnailer::print_vector(xmlIO XML){
		string vdata;
		int i=0;
		for (auto sample: audiodata){
			if (i>0) vdata+=",";
			vdata+=toString(sample);
			i++;
		}
		XML.addValue("data",vdata);
	}
	bool Vamp_node::init(int _channels,int _bits,int _samples, int _rate) {
		//need these to make sense of data
		channels=_channels;
		bits=_bits;
		samples=_samples;

		features.clear();
		return analyser.init(soname,id,_channels,_bits,_samples,_rate,outputNo,params);


		//attempt to load vamp plugin and prepare to receive frames of data
		//should the audio analysis contain a vamphost or should it inherit?
		//maybe neater to contain it in terms of headers etc

	}
	int Vamp_node::process_frame(uint8_t *data,int samples_in_frame) {
		analyser.process_frame(data,samples_in_frame);
		return 1;
	}
	void Vamp_node::cleanup() {
		analyser.cleanup();
		features=analyser.features;
	}
	string Vamp_node::get_features(){
		string data;
		for (auto i: features) {
			data=data+" ["+toString(i.second.number)+":"+toString(i.first);
			if (i.second.values.size()) {
				data+=" (";
				bool first=true;
				for (auto j: i.second.values) {
					if (first){
						first=false;
					}
					else data+=",";
					data=data+toString(j);
				}
				data+=") ";
			}
			data+="]";
		}
		return data;
	}
	bool sortsegments(std::pair<int,double> i,std::pair<int,double> j){
		return (i.second<j.second);
	}

	bool sortseggrps(std::pair<double,vector<pair<double,int> > > i,std::pair<double,vector<pair<double,int> > > j){
		return (i.first<j.first);
	}
	bool sortgroupmembers(pair<double,int> i,pair<double,int> j){
		return (i.first<j.first);
	}
	void Intensity_segmenter::cleanup(){
		//algorithm idea:
		//get average tempo and intensity for each segment and store them
		//scale by the range to get a value from 0.0 to 1.0
		//add tempo and intensity according to a weighting
		//score the results (ie 1st place, 2nd place) to end up with a set of integer numbers

		//how to group with similarity?
		//segments come with similarity groups
		// 1 - are the wanted git checksegments less than discovered?
		// N - do nothing
		// 2 - get intensity and tempo averages
		// 2 - count the groups
		// 3 - are the groups less than the discovered segments?
		// N - group by intensity as normal
		// 4 - are the groups less than the wanted levels?


		//for (auto a:analysers) a.second.cleanup(); //WHY NOT WORK - its as if the call is const
		analysers["segmenter"].cleanup();
		analysers["tempo"].cleanup();
		analysers["intensity"].cleanup();

		//combine with similarity numbers
		// 1. count similarity numbers

		map<int,vector<int> > similarities;

		//what do we want to know about these similarities?
		// how many are there? map.size()
		// how many members are in each one? map[item].size()
		// which members are they? auto m: map[item]

		uint32_t i=0;
		for (auto f:analysers["segmenter"].features) {
			if (f.second.values.size()) {
				int group=f.second.values[0];
				if (similarities.find(group)==similarities.end()){
					similarities[group]={};
				}
				similarities[group].push_back(i);
			}
			i++;
		}
		/*
		for (auto s:similarities) {
			string list="";
			for (int j=0;j<s.second.size();j++){
				if (j>0) list+=",";
				list +=toString(s.second[j]);
			}
			cerr<<"group "<<s.first<<" ["<<list<<"]"<<endl;
		}
		*/

		cerr<<analysers["segmenter"].features.size()<<" segments"<<endl;
		cerr<<analysers["tempo"].features.size()<<" tempo features"<<endl;
		cerr<<analysers["intensity"].features.size()<<" intensity features"<<endl;
		i=0;
		double min_tempo=9999999.0;
		double min_intensity=9999999.0;
		double max_tempo=0.0;
		double max_intensity=0.0;
		vector<double> tempos;
		vector<double> intensities;
		vector<double> times;
		auto g=++analysers["segmenter"].features.begin();
		for (auto f=analysers["segmenter"].features.begin();g!=analysers["segmenter"].features.end();f++,g++,i++){
			times.push_back(f->first);
			//integrate tempo and intensity algorithmically
			double tempo=0;
			if (analysers["tempo"].features.size()) {
				double pt=f->first;
				double pv=analysers["tempo"].get_value(f->first);
				for (auto u=analysers["tempo"].features.upper_bound(f->first);u!=analysers["tempo"].features.upper_bound(g->first);u++){
					tempo +=(u->first-pt)*(u->second.values[0]+pv)*0.5f; //area of the slice
					pt=u->first;
					pv=u->second.values[0];
				}
				tempo +=(g->first-pt)*(analysers["tempo"].get_value(g->first)+pv)*0.5f; //area of the last slice
				tempo /=g->first-f->first; //average value;
			}
			if (tempo>max_tempo) max_tempo=tempo;
			if (tempo<min_tempo) min_tempo=tempo;
			tempos.push_back(tempo);
			
			double intensity=0;
			if (analysers["intensity"].features.size()) {
				double pt=f->first;
				double pv=analysers["intensity"].get_value(f->first);
				for (auto u=analysers["intensity"].features.upper_bound(f->first);u!=analysers["intensity"].features.upper_bound(g->first);u++){
					intensity +=(u->first-pt)*(u->second.values[0]+pv)*0.5f; //area of the slice
					pt=u->first;
					pv=u->second.values[0];
				}
				intensity +=(g->first-pt)*(analysers["intensity"].get_value(g->first)+pv)*0.5f; //area of the last slice
				intensity /=g->first-f->first; //average value;
			}
			if (intensity>max_intensity) max_intensity=intensity;
			if (intensity<min_intensity) min_intensity=intensity;
			intensities.push_back(intensity);

			//cerr<<"segment "<<i<<": "<<f->first<<" to "<<g->first<<" average tempo: "<<tempo<<" ,intensity: "<<intensity<<" ,weighted: "<<(tempo*parameters["tempo_weight"]->value)+(intensity*parameters["intensity_weight"]->value)<<endl;
		}
		//
		//
		//need to calculate the last segment
		//
		//
		//either by adding a bit of code here or by adding a dummy feature at the track duration, previously
		//
		//
		//
		//


		//make relative scale 0.0-1.0 and save weighted totals
		vector< pair<int,double>> totals;
		vector<double> totalsmap;
		for (i=0;i<tempos.size();i++){
			tempos[i]=(tempos[i]-min_tempo)/(max_tempo-min_tempo);
			intensities[i]=(intensities[i]-min_intensity)/(max_intensity-min_intensity);
			totals.push_back(make_pair(i,(tempos[i]*parameters["tempo_weight"]->value)+(intensities[i]*parameters["intensity_weight"]->value)));
			totalsmap.push_back((tempos[i]*parameters["tempo_weight"]->value)+(intensities[i]*parameters["intensity_weight"]->value));
		}

		/*
		//sort and convert to features
		std::sort(totals.begin(),totals.end(),sortsegments);
		for (i=0;i<totals.size();i++) {
			cerr<<"segment "<<totals[i].first<<" average intensity: "<<totals[i].second<<endl;
		}
		vector<double> bucketoffsets;
		for (auto t:totals) bucketoffsets.push_back(0.0);
		if (parameters["levels"]->value>0.0&&parameters["levels"]->value<totals.size()){
			//use bucketoffsets to redistribute into smaller number of buckets
			int numbertoredistribute=totals.size()-((int)parameters["levels"]->value);
			double numberperbin=((double)numbertoredistribute/totals.size());
			double toadd=0.5f;
			int added=0;
			for (int j=0;j<totals.size();j++){
				int numbertoadd=min(numbertoredistribute-added,(int)toadd);
				toadd=(toadd+numberperbin)-numbertoadd;
				added+=numbertoadd;
				bucketoffsets[j]=added;
			}
			if (numbertoredistribute>0) {
				cerr<<"reducing number of levels by "<<numbertoredistribute<<", offsets:"<<endl;
				for (auto o:bucketoffsets) {
					cerr<<o<<":";
				}
				cerr<<endl;
			}
		}

		for (i=0;i<totals.size();i++){
			vampHost::feature f;
			f.values.push_back((double)i-bucketoffsets[i]);
			features[times[totals[i].first]]=f;
		}
/*
		/*
sort intensity totals
find out how many segments will share levels apart from similarity levels
start with a structure:
map<inputnum,vector<pair<tempo,inputnum>>
start grouping by similarity
if there are more similarity groups than wantedgroups, start by grouping similarities
otherwise take biggest similarity groups and split them by intensity
if there are still too many groups, merge closest smallest groups
finally sort by intensity to map output

nned to retrieve total intensity by segment
		*/
		//  segment  group_intensity   seg_intense segment
		vector<pair<double,vector<pair<double,int> > > > seggrps;
		vector<pair<double,vector<pair<double,int> > > > oldgrps;
		for (i=0;i<totalsmap.size();i++){
		    vector<pair<double,int> > data;
		    data.push_back(make_pair(totalsmap[i],i));
			oldgrps.push_back(make_pair(totalsmap[i],data));
		}

		for (auto s:similarities){
			//similarities is a collection of similarity groups in no particular order, referring to segment nos
			//at this point seggrps is in segment order
			if (s.second.size()>1){
				for (int j=s.second.size()-1;j>0;j--){
					oldgrps[s.second[0]].second.push_back(make_pair(totalsmap[s.second[j]],s.second[j]));
					//keep running average// should be by area?
					//seggrps[s.second[0]].first+=(totalsmap[s.second[j]]*(1.0/max(1,(int)seggrps[s.second[0]].second.size()-1)));
					//double div=seggrps[s.second[0]].second.size()==1?1.0:((double)seggrps[s.second[0]].second.size()-1/(double)seggrps[s.second[0]].second.size());
					//neat! this gives 1,1/2,2/3,3/4..
					//seggrps[s.second[0]].first*=div;

					//seggrps.erase(seggrps.begin()+s.second[j]);
					//after this has happened, seggrpgs indexing can be invalid
					
				}


				//easier is to
				double avg=0.0f;
				for (auto p:oldgrps[s.second[0]].second) avg+=p.first;
				avg/=oldgrps[s.second[0]].second.size();
				oldgrps[s.second[0]].first=avg;

			}
			seggrps.push_back(oldgrps[s.second[0]]);
		}

		//cerr<<"similarities assigned, "<<(totalsmap.size()-seggrps.size())<<" segments merged"<<endl;
		
		/*
		i=0;
		for (auto s:seggrps) {
			string list="";
			for (int j=0;j<s.second.size();j++){
				if (j>0) list+=",";
				list +=toString(s.second[j].second);
			}
			cerr<<"segment "<<i<<" ["<<list<<"]"<<endl;
			i++;
		}
		*/
		//sort the contents by intensity
		std::sort(seggrps.begin(),seggrps.end(),sortseggrps);
		//cerr<<"groups sorted by intensity:"<<endl;
		//possible mergers will be with groups with adjacent intensity
		i=0;
		/*
		for (auto s:seggrps) {
			string list="";
			for (int j=0;j<s.second.size();j++){
				if (j>0) list+=",";
				list +=toString(s.second[j].second);
			}
			cerr<<"segment "<<i<<" ["<<list<<"]"<<endl;
			i++;
		}
		*/

		if (((int)parameters["levels"]->value)>0) {
			if (seggrps.size()>(int)parameters["levels"]->value){
				while (seggrps.size()>(int)parameters["levels"]->value){
					//reduce similarity groups
					//decide the best 2 to merge
					vector<double> diffs;
					for (int j=0;j<seggrps.size()-1;j++) diffs.push_back(seggrps[j+1].first-seggrps[j].first);
					int smallest=0;
					for (int j=1;j<diffs.size();j++) if (diffs[j]<diffs[smallest]) smallest=j;
					for (int j=0;j<seggrps[smallest].second.size();j++) {
						seggrps[smallest+1].second.push_back(seggrps[smallest].second[j]);
						//cerr<<"copied segment "<<(seggrps[smallest].second[j].second)<<" from group "<<smallest<<" to group "<<(smallest+1)<<endl;
					}
					//recalculate intensity average
					double avg=0.0f;
					for (auto p:seggrps[smallest+1].second) avg+=p.first;
					avg/=seggrps[smallest+1].second.size();
					seggrps[smallest+1].first=avg;

					seggrps.erase(seggrps.begin()+smallest);
					//cerr<<"removed group "<<smallest<<endl;
				}
				cerr<<"intensities merged, "<<seggrps.size()<<" levels remain"<<endl;
			}
			//cerr<<seggrps.size()<<" groups, "<<(int)parameters["levels"]->value<<" levels requested, "<<(int)totalsmap.size()<<" original segments"<<endl;
			if  (seggrps.size()<min((int)parameters["levels"]->value,(int)totalsmap.size())){
				while (seggrps.size()<min((int)parameters["levels"]->value,(int)totalsmap.size())) {
					//split groups
					//calculate standard deviation of intensity variation
					vector<double> devs;
					for (int j=0;j<seggrps.size()-1;j++) {
						double avg=0.0;
						double dev=0.0;
						for (int k=0;k<seggrps[j].second.size();k++){
							avg+=seggrps[j].second[k].first;
						}
						avg/=seggrps[j].second.size();
						for (int k=0;k<seggrps[j].second.size();k++){
							dev+=pow(avg-k<seggrps[j].second[k].first,2.0);
						}
						dev/=seggrps[j].second.size();
						devs.push_back(pow(dev,0.5));
					}
					//find group with largest standard deviation
					int largest=0;
					for (int j=1;j<devs.size();j++) if (devs[j]>devs[largest]) largest=j;
					//sanity check: if there are any groups that can be split they will have larger SD than singleton groups
					//sort members of the group
					std::sort(seggrps[largest].second.begin(),seggrps[largest].second.end(),sortgroupmembers);
					//create a new group
					std::pair<double,vector<pair<double,int> > > newgroup;
					//cerr<<"splitting group "<<largest<<" with "<<seggrps[largest].second.size()<<" segments: new group will have "<<seggrps[largest].second.size()-(seggrps[largest].second.size()/2)<<" segments"<<endl;
					for (int j=seggrps[largest].second.size()-1;j>(seggrps[largest].second.size()/2)-1;j--) {
						newgroup.second.push_back(seggrps[largest].second[j]);
						seggrps[largest].second.erase(seggrps[largest].second.begin()+j);
					}

					//refresh averages for the 2 groups
					double avg=0.0f;
					for (auto p:seggrps[largest].second) avg+=p.first;
					avg/=seggrps[largest].second.size();
					seggrps[largest].first=avg;

					avg=0.0f;
					for (auto p:newgroup.second) avg+=p.first;
					avg/=newgroup.second.size();
					newgroup.first=avg;

					//add the new group
					seggrps.push_back(newgroup);
					//cerr<<" added new group with "<<newgroup.second.size()<<" segments"<<endl;
				}
				cerr<<"similaritity groups split, "<<seggrps.size()<<" levels total"<<endl;
				//seggrps are now out of order
				std::sort(seggrps.begin(),seggrps.end(),sortseggrps);

			}
			
		}

		map<int,int> outputvalues;
		for (int j=0;j<seggrps.size();j++){
			string list="";
			for (int k=0;k<seggrps[j].second.size();k++){
				outputvalues[seggrps[j].second[k].second]=j;
				if (k>0) list+=",";
				list +=toString(seggrps[j].second[k].second);
			}
			//cerr<<"output value: "<<j<<" assigned to ["<<list<<"]"<<endl;
		}


		for (i=0;i<totals.size();i++){
			vampHost::feature f;
			f.values.push_back(outputvalues[i]);
			features[times[totals[i].first]]=f;
		}

	}
}

/*
A data structure to represent segments and their mapping to output levels
how do we merge the intensity groups with the similarities?

we create a list




... we iterate through the list of segments and place the right output number


*/