summaryrefslogtreecommitdiff
path: root/vodaviz.pde
blob: 2b393638db57513e84dc308029736473a0446dfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//vodafone call visualisation
//
//Tim Redfern Jan 2012
//
//scale of wall 10.57x2.8m - some parts are obscured
//
//416 x 110 in. ~ 62400x16500 ~ 1029 mpx ~ 2945 MB ram to open
//
//CousinMarriageWorld.svg, nominally 940 × 470 pixels, file size: 1.99 MB
//World_map_(Miller_cylindrical_projection,_blank).svg‎, nominally 634 × 477 pixels, file size: 1.84 MB
//wikimedia
//
//http://www.vectortemplates.com/vector-world-map.php

//requirements - 
//must be able to transform points to a new projection
// maybe not through normal shape library
//must be able to find a random point within the shape
// 

//250112 so far so good, can iterate children.
//safest thing is to establish that I can place a point as being inside or outside of a shape
//(are they closed properly!)

//If we can find points in them then we can start the main task:
//connecting parts of the SVG with rows in the spreadsheet

//maybe next first I should look at projections (to keep them happy)
//I have a map with rectangular coords,
//is easy to enough to play with the projection

// public boolean contains(RGeomElem shp)
// public geomerative.RRectangle getBounds()
// --> this is kind of hidden. why? anyway, it should be possible to use it
//another option is to use the OUTLINE of the country (as a purely geometric thing).

/*
 http://en.wikipedia.org/wiki/3D_projection
 
 a- the 3D position of a point A that is to be projected.
 c- the 3D position of a point C representing the camera.
 O- The orientation of the camera (represented, for instance, by Tait–Bryan angles).
 e- the viewer's position relative to the display surface.[1]


http://williams.best.vwh.net/avform.htm#Crs
==good stuff

Intermediate points on a great circle
Here we find points (lat,lon) a given fraction of the distance (d) between them.
Suppose the starting point is (lat1,lon1) and the final point (lat2,lon2) and we want the point
a fraction f along the great circle route. f=0 is point 1. f=1 is point 2. The two points cannot
be antipodal ( i.e. lat1+lat2=0 and abs(lon1-lon2)=pi) because then the route is undefined.
The intermediate latitude and longitude is then given by:

        A=sin((1-f)*d)/sin(d)
        B=sin(f*d)/sin(d)
        x = A*cos(lat1)*cos(lon1) +  B*cos(lat2)*cos(lon2)
        y = A*cos(lat1)*sin(lon1) +  B*cos(lat2)*sin(lon2)
        z = A*sin(lat1)           +  B*sin(lat2)
        lat=atan2(z,sqrt(x^2+y^2))
        lon=atan2(y,x)
        
        //find 
        
        RPoint sp,ep,mp;
        float f=0.8; //fraction along path;
        float d=acos(sin(sp.y)*sin(ep.y)+cos(sp.y)*cos(ep.y)*cos(sp.x-ep.x));
        float A=sin((1-f)*d)/sin(d);
        float B=sin(f*d)/sin(d);
        float x = A*cos(lat1)*cos(lon1) +  B*cos(lat2)*cos(lon2);
        float y = A*cos(lat1)*sin(lon1) +  B*cos(lat2)*sin(lon2);
        float z = A*sin(lat1)           +  B*sin(lat2);
        mp.y=atan2(z,sqrt(x^2+y^2));
        mp.x=atan2(y,x);
        
        
        
        drawing - circles (fixed diameter), closed shape made of 2 bezier curves

 */

import processing.pdf.*;
import geomerative.*;

float log10 (float x) {
  return (log(x) / log(10));
}
class pointNormalise {
  //take pixel coords and turn into lat/lng radians
  float xo,xs,yo,ys;
  pointNormalise(float _xo,float _xs,float _yo,float _ys) {
    xo=_xo;
    xs=_xs;
    yo=_yo;
    ys=_ys;
  }
  RPoint alise(RPoint p) {
        //normalise
        float px=(((p.x-xo)/xs)-0.5)*PI*2; //26)/736);
        float py=(((p.y-yo)/ys)-0.5)*PI; //90)/390);
        
        return new RPoint(px,py);
  }
}

class pointTransform  {
  
  RPoint form(RPoint in) {
    //transform
    return new RPoint (((in.x*0.25)+(PI/2)),((in.y)*0.3)+(PI/2)); //front half of sphere
  }
  
}

class sphereMap {
        
    RPoint per(RPoint p,float _r) {
        

        //map to 3D sphere
        float r=getHeight()*_r;
        float x=r*cos(p.x)*(sin(p.y)) *2;
        float z=r*sin(p.x)*(sin(p.y))-985;
        float y=r*cos(p.y)+(getHeight()*0.5)-210;  
        
        //camera at 0,0,0 
        //screen plane at 0,0,100
        //(dx-ex)(ez/dz)
        //(dy-ey)(ez/dz)
        
        //rotate camera
        
        //transform into 2D plane @100

        return new RPoint(x*(100/z),y*(100/z));
    }
}

RPoint screenMapper(RPoint p) {
    p.x=((p.x*getWidth())/(PI*2))+(getWidth()/2);
    p.y=((p.y*getHeight())/PI)+(getHeight()/2);
    return p;
}

RPoint plerp(RPoint s,RPoint e,float a) {
  return new RPoint(lerp(s.x,e.x,a),lerp(s.y,e.y,a));
}

float GSphereDist(RPoint p1,RPoint p2) {
  return acos(sin(p1.y)*sin(p2.y)+cos(p1.y)*cos(p2.y)*cos(p1.x-p2.x));
}

RPoint GCircFract(RPoint sp,RPoint ep,float f) {
        float d=GSphereDist(sp,ep);
        float A=sin((1-f)*d)/sin(d);
        float B=sin(f*d)/sin(d);
        float x = A*cos(sp.y)*cos(sp.x) +  B*cos(ep.y)*cos(ep.x);
        float y = A*cos(sp.y)*sin(sp.x) +  B*cos(ep.y)*sin(ep.x);
        float z = A*sin(sp.y)           +  B*sin(ep.y);
        return new RPoint(atan2(y,x),atan2(z,sqrt(pow(x,2)+pow(y,2))));
}

RShape shp;
pointNormalise pnorm;
pointTransform ptrans;
sphereMap smap;

String mode;

csvloader data;
calldata calls;

bitmapcountry Ireland;

PImage lightmap;

void setup(){
  println("vodaviz v0.21");
  RG.init(this);

  //mode="PDF";
  if (mode=="PDF") size(832,220,PDF, "vodaviz_test_080212.pdf"); //P3D); //832,220); //nb pdf is 800x600
  else size(832,220); //,PDF, "testoutput.pdf"); //P3D); //832,220); //nb pdf is 800x600
  
  smooth();
  float m = millis();
  
  shp = RG.loadShape("countries_named_mercator.svg"); //test_drawing.svg"); //world_countries_outlines_split.svg");
  
  pnorm = new pointNormalise(18.279,746.302,129.314,374.293); 
  ptrans = new pointTransform();
  smap = new sphereMap();
  
  lightmap=loadImage("earthlights2_dmsp_big.jpg");
  
  
  RG.ignoreStyles();
  println("loaded svg in "+((millis()-m)*.001)+" seconds");
  Ireland=new bitmapcountry("Ireland",0,0,shp.children[0]);
  Ireland.analyse(18.279,746.302,129.314,374.293);
  data=new csvloader("calls.csv");
  calls=new calldata(data.data,shp);
 
  background(255,255,255);
  noFill();
  stroke(255);
  strokeWeight(.02);
  
  if (false) { //check worked example http://williams.best.vwh.net/avform.htm#Example
    RPoint LAX=new RPoint(2.066470,0.592539);
    RPoint JFK=new RPoint(1.287762,0.709186);
    println("LAX to JFK:"+GSphereDist(LAX,JFK)+" radians");
    RPoint LmJ=GCircFract(LAX,JFK,0.4);
    println("40% of LAX to JFK:"+LmJ.y+","+LmJ.x+" radians");
  }
  

  
}

int i=0;
int j=0;

void draw() {
 //if (i==0) image(lightmap,0,0,getWidth(),getHeight());
  
  //pick a random colour
  stroke(random(150)+10,random(150)+10,random(150)+10);

  if (true) //draw globe
  {
       if (true) { //draw countries
        beginShape();
        for (int k=0;k<calls.getcountry(i).outline.paths[0].commands.length;k++) {
          RPoint sp=calls.getcountry(i).outline.paths[0].commands[k].startPoint;
          RPoint dp=smap.per(ptrans.form(pnorm.alise(sp)),4);
          
          vertex(dp.x+(getWidth()/2),dp.y+(getHeight()/2)); //,z); //z);
        }
        endShape();
        //println("drawing "+calls.getcountry(i).name+": "+calls.getcountry(i).outline.paths[0].commands.length+" points");
       }
       
      
      if (true) {
        for (int j=0;j<calls.countries.get(i).calls*.001;j++) {
          RPoint s=calls.countries.get(i).getpoint();
          RPoint e=Ireland.getpoint();
           if (s.x>0&&e.x>0){ //point found
            RPoint sp=ptrans.form(pnorm.alise(s));
            RPoint ep=ptrans.form(pnorm.alise(e));
            RPoint Sp=smap.per(sp,4);
            RPoint Ep=smap.per(ep,4);
            RPoint Mp=smap.per(GCircFract(sp,ep,0.8),4.1);
              beginShape();
                line(Sp.x+(getWidth()/2),Sp.y+(getHeight()/2),Mp.x+(getWidth()/2),Mp.y+(getHeight()/2));
                line(Mp.x+(getWidth()/2),Mp.y+(getHeight()/2),Ep.x+(getWidth()/2),Ep.y+(getHeight()/2));
              endShape();
          }
        }
          //println("plotting "+calls.countries.get(i).name+": "+calls.countries.get(i).calls+" calls");
        }
        
  }
  else //draw 2D
  {
     if (true) { //draw countries
        beginShape();
        for (int k=0;k<calls.getcountry(i).outline.paths[0].commands.length;k++) {
          RPoint sp=calls.getcountry(i).outline.paths[0].commands[k].startPoint;
          RPoint dp=screenMapper(pnorm.alise(sp));
          
          vertex(dp.x,dp.y); //,z); //z);
        }
        endShape();
        //println("drawing "+calls.getcountry(i).name+": "+calls.getcountry(i).outline.paths[0].commands.length+" points");
      }
     if (true) { //draw lines
        for (int j=0;j<log10(calls.countries.get(i).calls)*100;j++) {
          RPoint s=calls.countries.get(i).getpoint();
          RPoint e=Ireland.getpoint();
           if (s.x>0&&e.x>0){ //point found
            RPoint Sp=screenMapper(pnorm.alise(s));
            RPoint Ep=screenMapper(pnorm.alise(e));
            RPoint Mp=plerp(Sp,Ep,0.75);
              beginShape();
                //line(Sp.x+(getWidth()/2),Sp.y+(getHeight()/2),Mp.x+(getWidth()/2),Mp.y+(getHeight()/2));
                //line(Mp.x+(getWidth()/2),Mp.y+(getHeight()/2),Ep.x+(getWidth()/2),Ep.y+(getHeight()/2));
                bezier(Sp.x, Sp.y, Sp.x, Sp.y-((getHeight()-Sp.y)*.1), Ep.x, Ep.y-((getHeight()-Ep.y)*.1), Ep.x, Ep.y);
              endShape();
          }
        }
          //println("plotting "+calls.countries.get(i).name+": "+calls.countries.get(i).calls+" calls");
        }
  }

       
  i++;

  //}
  if (i==calls.countries.size()-1) {
        println("finished");
       noLoop();
       if (mode=="PDF") exit();
  }
}

void mousePressed() {
  
}